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Abstract

The computer programatompaw generates projector and basis functions which are needed for performing electronic structure
calculations based on the Projector Augmented Wave (PAW) method. The program is applicable to materials throughout the
periodic table. For each element, the user inputs the atomic number, the electronic configuration, a choice of basis functions, and
an augmentation radius. The program produces an output file containing the projector and basis functions and the corresponding
matrix elements in a form which can be read be thepwpaw PAW code. Additional data files are also produced which can be
used to help evaluate the accuracy and efficiency of the generated functions. 2001 Elsevier Science B.V. All rights reserved.
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PROGRAM SUMMARY

Title of program: genproj

Catalogue identifier: ADNQ

Program Summary URL: http://cpc.cs.qub.ac.uk/summaries/ADNQ

Program obtainable from: CPC Program Library, Queen’s Univer-
sity of Belfast, N. Ireland

Computers on which code has been tested: DEC Alpha, IBM SP2

Operating systems under which the program has been tested: Unix

Programming language used: Fortran90

Memory required to execute with typical data: 20 Mbytes or less

No. of bytes in distributed program, including test data, etc.:
1 173 014

Distribution format: gzip tar file

Nature of physical problem
The projector augmented wave (PAW) method, developed by
Blöchl, is a very powerful tool for performing electronic structure
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calculations within density functional theory, combining some of the
best features of pseudopotential and all-electron approaches. Devel-
oping a procedure for constructing the projector and basis functions
for a PAW calculations is similar to the challenge of constructing
of pseudopotentials for a pseudopotential calculation. The construc-
tion scheme used in the present scheme is very similar to the one
originally suggested by Blöchl and has now been demonstrated to
work well for a number of complex materials.

Method of solution
The method starts with a self-consistent all-electron atomic structure
calculation within the framework of density functional theory. The
projector and basis functions are derived from the eigenstates of the
all-electron atomic Hamiltonian. They are determined by iteratively
solving radial differential equations.

Restrictions on the complexity of the program
All atoms in the periodic table can be treated with this approach, al-
though those with high atomic numbers will have systematic errors

due to the neglect of relativistic effects in this version of the code.
The local density approximation (LDA) is coded for the exchange-
correlation functional in this version of the code; other function-
als, such as the generalized gradient approximation could easily be
added.

Also, in this version of the code, it is assumed that electron den-
sity due to frozen core electrons is contained within the augmen-
tation sphere. This assumption obviates the need for pseudo core
wave functions or core tail density functions. The accuracy of this
assumption can by controlled by including upper core states within
the PAW basis set.

Typical running time
10 minutes or less.

Unusual features of the program
Some scripts are included to make it easy to generate plots of the
output results using the Unix packagegnuplot.

LONG WRITE-UP

1. Introduction

Since the introduction of the notion of the “norm-conserving” pseudopotential by Hamann, Schlüter, and
Chiang [1] and Kerker [2], efforts have been made to perfect the physical and numerical accuracy of the
pseudopotential formalism. While a table of pseudopotentials for all of the elements in the periodic table
developed by Bachelet, Hamann, and Schlüter [3] has been well-used, many workers have instead developed
modified functional forms, such as the generalized pseudopotential form of Hamann [4] and Blöchl [5], the
plane-wave optimized form of Troullier and Martins [6], or the soft-pseudopotential form of Vanderbilt [7],
which can be optimized for a particular material and computational technique. The computer code for generating
pseudopotentials for elements throughout the periodic table, recently released by Fuchs and Scheffler [8],
implements many of the ideas that have helped the development of the pseudopotential techniques during the
past 20 years.

The Projector Augmented Wave (PAW) approach developed by Blöchl [9] goes beyond the pseudopotential
approach and retains information about the all-electron calculation without significant additional computation.
The problem of constructing the projector and basis functions needed for the PAW technique is very similar to
the problem of constructing local and non-local pseudopotentials. In addition to Blöchl’s original construction
procedure, several others [10–12] have been suggested. Theatompaw code uses a procedure similar to that
originally suggested by Blöchl. It generates an output that is used by thepwpaw [13] code and additional outputs
that allow the user to assess the accuracy and efficiency of the generated functions.

In this paper, we briefly present the formalism in Section 2.1 and show several examples which illustrate the
choice of parameters in Section 2.2. A description of theatompaw and related programs is given in Section 3.
A description of the input and output foratompaw is given in Section 4. Section 5 contains a few concluding
remarks.
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2. PAW basis and projector functions

2.1. Formalism

PAW calculations require a set of basis and projector functions which are denoted (in the notation of previous
work [9–12]) |φa

i (r)〉, |φ̃a
i (r)〉, and|p̃a

i (r)〉, for the all-electron basis functions, pseudopotential basis functions,
and projector functions, respectively. Here the “a” superscript denotes the atom index (which is suppressed in most
of the remainder of this section), and the “i” subscript represents the atomic quantum numbersni , li , andmi . Since
these function are constructed from equations for a spherical atom, each can be written as a product of a radial
function times a spherical harmonic function, such as:∣∣φa

i (r)
〉 ≡ ∣∣φa

ni limi
(r)

〉 ≡ φa
ni li

(r)

r
Ylimi (r̂). (1)

The quantum numberni is used to enumerate the radial functionsφa
ni li

(r), φ̃a
ni li

(r), andp̃a
ni li

(r) for a given angular
momentumli . It often corresponds to the principal quantum number for the state but also can enumerate generalized
functions needed for the basis [9]. Although the PAW method works using any of a variety of basis and projector
functions, the efficiency and accuracy of the calculation are affected by this choice. In earlier work [10,11] we
investigated several alternative construction schemes. However, we found a slight modification of the original
scheme developed by Blöchl [9], to be the most robust.

The starting point of the construction process is an all-electron self-consistent solution of the Schrödinger
equation for the reference atom or ion. It is assumed that the total electron density can be partitioned into a
core electron densityncore(r), corresponding toQcore electrons and a valence electron densityn(r). The core
densityncore(r) is assumed to be fixed (“frozen”) in the same form in the atom as it is in the solid. Thus, all of
the calculational effort can be focused on the valence electrons. For some materials, especially transition metals
or ionic compounds, it is prudent to extend the notion of “valence” electrons beyond the chemical definition to
include upper core states. It is for the purpose of representing these generalized valence electrons in the atom and
in the solid that we construct the basis and projector functions.

The all-electron basis functions|φ0
i (r)〉 are valence and continuum eigenstates of the Kohn–Sham [14]

Hamiltonian. Here the superscript “0” is used to distinguish these initial basis functions from the final
orthogonalized ones.

H(r)
∣∣φ0

i (r)
〉 = εi

∣∣φ0
i (r)

〉
, (2)

The Hamiltonian is given in terms of the self-consistent valence densityn(r) by:

H(r)= − h̄2

2m
∇2 + veff(r), where

veff(r)≡ vion(r)+ e2
∫

d3r ′ n(r ′)
|r − r′| +µxc

[
ncore(r)+ n(r)

]
.

(3)

Herevion(r) denotes the ionic Coulomb potential

vion(r) = −Ze2

r
+ e2

∫
d3r ′ ncore(r

′)
|r − r′| , (4)

with Z denoting the nuclear charge. The functionµxc denotes the exchange correlation functional. In the present
work, we used the local density approximation (LDA) form of Perdew and Wang [15], but other forms can be
easily added to the code. Self-consistency implies that the valence density and the valence basis functions are
related according to:

n(r) =
∑
ni li

wni li

|φ0
ni li

(r)|2
4πr2 , (5)

wherewni li denotes the occupancy of the orbital “nili ” which can be zero, especially for generalized functions.
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The second consideration in constructing the basis and projector functions is to choose an appropriate
augmentation radiusrc. This radius should be small enough so that for all the materials to be studied with these
functions, the enclosing spheres do not overlap. On the other hand, it should be large enough so that core density
ncore(r) is well contained withinrc. 1

In Blöchl’s pseudo-function construction scheme, the smoothness of the functions is controlled by a shape
functionk(r) which vanishes outside the augmentation region. Some possible choices of shape functions are:

k(r)= e−(r/σ )λ or k(r)=




[
sin(πr/rc)

(πr/rc)

]2

for r < rc,

0 for r � rc,

(6)

whereλ is typically 6. The squared sinc function form is generally found to have slightly better convergence
properties in Fourier space than those of the exponential form.

The pseudo-basis functions|φ̃0
i (r)〉 are found by solving a self-consistent Schrödinger-like equation involving

the “smooth” HamiltoniañH . The equation takes the form:(
H̃ (r)− εi

)∣∣φ̃0
i (r)

〉 = Cik(r)
∣∣φ̃0

i (r)
〉
. (7)

In this equation,εi is fixed at the all-electron eigenvalue found in Eq. (2), whileCi is to be determined. In
numerically integrating the radial part of this equation forφ̃0

ni li
(r), the coefficientCi is adjusted so that̃φ0

ni li
(r) has

the correct number of nodes for eachl value (zero nodes for the basis function with the lowest one-electron energy
εni li , incremented by one node for each additional basis function at higher one-electron energies). In addition, the
coefficientCi is adjusted so that̃φ0

ni li
(r) satisfies the boundary condition:

φ̃0
ni li

(r)= φ0
ni li

(r) for r � rc. (8)

In practice, this is achieved by iterating Eq. (7) with variations inCi so that the logarithmic derivatives ofφ0
ni li

(rc)

andφ̃0
ni li

(rc) are equal, following the approach described in Hartree’s text [16]. The smooth Hamiltonian used in
Eq. (7) is given by

H̃ (r)= − h̄2

2m
∇2 + ṽeff(r), where

ṽeff(r)≡ ṽloc(r)+ e2
∫

d3r ′ ñ(r ′)+ n̂(r ′)
|r − r′| +µxc

[
ñ(r)

]
.

(9)

In this expression for the smooth effective potential, the termṽloc(r), denotes a local potential which vanishes
outside the augmentation region. In the present work, this contribution is constructed in terms of the shape function:

ṽloc(r)≡ V0k(r), (10)

whereV0 is a chosen amplitude. In our experience, most systems are not sensitive to this choice, however for highly
ionic materials, the best choice forV0 seems to be the value which makes the non-local coefficientCis in Eq. (7)
vanish for the indexis corresponding to the valences-state of each material. An easy way to accomplish this, is
to run theatompaw program once withV0 = 0 to determine the value ofC0

is
and then run theatompaw program

a second time withV0 = −C0
is

. In fact, within numerical accuracy, the basis functions and projector functions are
invariant to the choice ofV0. From this point of view, we see that the role ofV0 is to adjust the strength of the local
potential contributions relative to the strength of the non-local contributions for each atom.2

1 In the present version of the code we set the core tail function defined in Ref. [10] identically to zero since we find that whenever the core
density has a contribution which is appreciable forr > rc , it is a better approximation to represent those upper core electrons as generalized
valence electrons.

2 This procedure differs from that of Blöchl [9] who determinesṽloc(r) by unscreening a constructed pseudopotential.
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At self-consistency, the pseudo-densityñ(r) in Eq. (9) is determined from the pseudo-basis functions

ñ(r) =
∑
ni li

wni li

|φ̃0
ni li

(r)|2
4πr2 . (11)

The additional Coulombic contribution in Eq. (9) denoted byn̂(r), represents the compensation charge density
which is needed to correct the total atomic charge. This charge density is spherically symmetric for the atom and
can be written:

n̂(r) =Q00g00(r), (12)

where the monopole momentQ00 is

Q00 ≡ −Z +Qcore+
∫

d3r
[
n(r)− ñ(r)

]
. (13)

The functional form of atom-centered moments of the compensation charge is now chosen to be proportional to
the shape function:

gLM(r)≡NLr
Lk(r)YLM(r̂), where

[√
4πNL

]−1 ≡
rc∫

0

drr2+2Lk(r).
(14)

Here,YLM(r̂) denotes the spherical harmonic function andNL denotes a normalization factor.
Once the pseudo-basis functions|φ̃0

i 〉(r) have been determined by self-consistently solving Eq. (7), the
corresponding projector functions are formed according to:

∣∣p̃0
i (r)

〉 ≡ k(r)|φ̃0
i (r)〉

〈φ̃0
i |k|φ̃0

i 〉
. (15)

This means that these initial pseudo-basis functions and the corresponding projector functions are normalized
according to〈

φ̃0
i

∣∣p̃0
i

〉 = 1, (16)

and related to the smooth Hamiltonian according to the identity:(
H̃ (r)− εi

)∣∣φ̃0
i (r)

〉 = ∣∣p̃0
i (r)

〉〈
φ̃0
i

∣∣H̃ − εi
∣∣φ̃0

i

〉
. (17)

The final basis and projector functions{|φi(r)〉, |φ̃i (r)〉, |p̃i (r)〉} are formed from the initial functions{|φ0
i (r)〉,

|φ̃0
i (r)〉, |p̃0

i (r)〉} by a Gram-Schmidt orthogonalization procedure as described in Eqs. (91)–(96) of Ref. [9].
Specifically, for each angular momentum quantum numberl, we denote the successive radial functions with indices
n1, n2, . . . , etc. The first set of basis and projector functions is given by the initial functions:

p̃n1l (r)≡ p̃0
n1l

(r), φ̃n1l(r) ≡ φ̃0
n1l

(r), and φn1l (r)≡ φ0
n1l

(r). (18)

If there is a second radial basis function for thatl, the final function is orthonormalized with respect to the first
according to:

p̃n2l (r) = Fn2l

[
p̃0
n2l

(r)− p̃n1l (r)〈φ̃n1l |p̃0
n2l

〉],
φ̃n2l (r) = Fn2l

[
φ̃0
n2l

(r)− φ̃n1l (r)〈p̃n1l|φ̃0
n2l

〉], (19)

φn2l (r) = Fn2l

[
φ0
n2l

(r)− φn1l (r)〈p̃n1l|φ̃0
n2l

〉],
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where

Fn2l ≡ (
1− 〈φ̃0

n2l
|p̃n1l〉〈φ̃n1l |p̃0

n2l
〉)−1/2

. (20)

If there were additional radial basis functions for thatl, they would be orthonormalized in a similar way. In our
experience, and in that of previous workers [5,17], one or two radial basis functions are usually sufficient to span
the Hilbert space of smooth functions within each atomic sphere.

In terms of these basis functions, the generalized eigenvalue equation for the PAW formalism can be written

HPAW(r)
∣∣Ψ̃E(r)

〉 =EO
∣∣Ψ̃E(r)

〉
, (21)

where

HPAW ≡ H̃ (r)+
∑
aij

∣∣p̃a
i

〉(〈φa
i |Ha|φa

j 〉 − 〈φ̃a
i |H̃ a|φ̃a

j 〉
)〈
p̃a
j

∣∣, (22)

and

O ≡ 1 +
∑
aij

∣∣p̃a
i

〉(〈φa
i |φa

j 〉 − 〈φ̃a
i |φ̃a

j 〉
)〈
p̃a
j

∣∣. (23)

The eigenstates|Ψ̃E(r)〉 of Eq. (21) are related to the eigenstates of the all-electron Hamiltonian, according to:∣∣ΨE(r)
〉 = ∣∣Ψ̃E(r)

〉 + ∑
ai

(|φa
i (r)〉 − |φ̃a

i (r)〉
)〈
p̃a
i

∣∣Ψ̃E

〉
, (24)

within the accuracy of the PAW representation. For the case of a spherically symmetric atom, the site indexa is
trivial and all matrix elements are diagonal inlimi indices. By construction, the valence densityn(r) (Eq. (5))
and pseudo-densitỹn(r) (Eq. (11)) are expressed in terms of the initialφ0

ni li
(r) andφ̃0

ni li
(r) basis functions which

determine the all-electron (2) and and smooth (9) Hamiltonians. In turn, these Hamiltonians are used to generate
these functions and the projectors. It can be shown that, after the orthonormalization procedure of Eqs. (18),
(19), and (20), the initial pseudo-wavefunctions|φ̃0

i (r)〉 are eigenstates of the atomic PAW Hamiltonian (21), with
corresponding eigenvaluesεi of the all-electron Hamiltonian (2). More generally, the HamiltoniansHa andH̃ a

which appear in Eq. (22) are defined in terms of matrix elements evaluated using the orthogonalized basis functions
{φa

i } and{φ̃a
i } [9,10,13]. The construction procedure ensures thatHPAW reproduces the same eigenvalue spectrum

as the all-electron Hamiltonian within the energy range spanned by the basis functions.

2.2. Examples

Fig. 1 shows an example of a set of projector and basis functions generated for Mo. These functions have been
successfully used in the study of the electronic structure of CaMoO4 and related materials [18]. In this example
there are two projector and basis sets for eachl value. For eachl, the first φ̃nl(r) and p̃nl(r) functions have no
nodes, while the functions for the second set have one node.

In general, as in the construction of pseudopotentials [8], one often has to balance accuracy versus efficiency
in order to generate the best basis and projector functions for a given material. Greater accuracy is achieved by
choosingrc to be small and faster convergence in the plane wave expansion is obtained by choosingrc to be large.
To quantify the plane wave convergence, we can define a Fourier-space function:

Fni li (q)≡ ¯̃p nili
(q)

¯̃
φ ni li

(q)q2. (25)

Here ¯̃p ni li
(q) and ¯̃

φ ni li
(q) represent the Fourier transforms of the radial functionsp̃ni li (r) and φ̃ni li (r),

respectively. The integral ofFni li (q) with respect toq is related, through Parseval’s relation to the radial integral
involved with calculating the overlap of a projector function with the corresponding pseudo-basis function. The
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Fig. 1. Plot of radial projector and basis functions for Mo generated using the squared sinc form of the shape function andrc = 1.5 bohr. For
eachnl, theφnl(r), φ̃nl (r), andp̃nl(r) functions are plotted with solid, dottes, and dashed lines, respectively.

non-zero range ofFni li (q) is a good indication of the plane wave convergence of the overlap integral〈p̃a
i |Ψ̃nk〉 of

the projector function with a Bloch pseudo-wavefunction.
We illustrate the plane wave convergence for the 2p basis functions for O in Fig. 2 where the choices ofrc = 1.0

and 1.3 bohr and the effects of the exponential (“exp”) and squared sinc (“sinc”) functional forms for the shape
functionk(r) are compared. The “exp” form was chosen withλ= 6 andσ ≈ 0.65rc (so thatk(rc) ≈ 1× 10−6). In
Fig. 2 we see that the functions generated withrc = 1.3 bohr converge much more rapidly that those generated with
rc = 1.0 bohr. We also see that the function formed using the exponential shape function has a small oscillation at
largeq , while the function formed with the squared sinc shape function goes smoothly to zero.

To further assess these choices, we have carried out calculations on the electronic structure of CaO using these
functions with thepwpaw [13] code. For the purpose of this test, Ca projectors and basis functions where fixed.
They were constructed with the “sinc” shape functions withrc = 1.5 bohr, including 3s, 4s, 3p, εp, and 3d
functions.3 Four different choices for the O projector and basis functions were studied including the exponential
and squared sinc shape functions andrc = 1.4 or 1.2 bohr as indicated in Table 1 and in the legends of Figs. 3, 4,
and 5. In Fig. 3, we show a plot of the negative of the cohesive energy of CaO as a function of cubic lattice constant
a. The calculated lattice constant results were fit to the Murnaghan equation of state [19]. The resulting fit values
of the lattice parameter, bulk modulus, and cohesive energy are summarized in Table 1. It is reassuring to notice
that these results are very insensitive to the choice of the projector and basis functions as they should be. The small
variations in the equilibrium cohesive energies are due to differences in the solid and atomic calculations which

3 In order to ensure that the secondl = 1 radial basis functions for Ca are orthogonal to the 3p basis functions, it is convenient to choose a
continuum basis functionφεp(r) which has 3 nodes well within the augmentation region in place ofφ4p(r) whose 3rd node is inconveniently
close to the augmentation radius.
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Fig. 2. Plot ofF2p(q) defined in Eq. (25) for the 2p states of O plotted as a function ofq, comparing results forrc = 1.0 andrc = 1.3 bohr.
Insert compares results on an expanded scale using two forms for weight functionsk(r) as indicated.

Table 1
Comparison of the equilibrium fit parameters for CaO− E0 (cohesive energy),B (bulk
modulus), anda0 (lattice constant) for 4 choices for projector and basis functions of O,
corresponding to 4 curves plotted in Fig. 3

Label {ni li } E0 (eV/atom) a0 (Å) B (GPA)

“exp”, rc=1.4 2s, 2p 7.176 4.704 126

“sinc”, rc=1.4 2s, 2p 7.174 4.705 126

“sinc”, rc=1.2 2s, 2p 7.185 4.703 127

“sinc”, rc=1.4 (×2) 2s, εs, 2p, εp 7.195 4.700 127

cancel each other slightly differently in each case. The equilibrium lattice constant varies by less that 0.1% and the
bulk modulus by less than 1%.

On the other hand, the number of plane-waves needed to converge a calculation is more sensitive to these choices
as seen in Fig. 4, where the negative of the cohesive energy is plotted versus the plane-wave cutoff parameter
(labeled “Gcut_LOW” in correspondence with the notation used in thepwpaw code). Here we see that the sinc
shape form converges more rapidly as a function of plane-wave cutoff than does the exponential shape form even
when additional basis functions are added forrc = 1.4 bohr. In fact, the sinc shape function withrc = 1.2 bohr
results converge at approximately the same plane-wave cutoff as those using the exponential shape function with
rc = 1.4 bohr for this example.

The accuracy of a calculation can also be sensitive to the choice of basis function. In Fig. 5 we show the
calculated logarithmic derivatives for generalizedl = 1 (p) radial functions of O for projector and basis functions
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Fig. 3. Fig. 4.

Fig. 3. Plot of the negative of the cohesive energy of CaO as a function of the cubic lattice parametera. These results were obtained using the
pwpaw code [13] with 4 different choices for the O basis and projector functions as indicated. The lines through the symbols represent fits to
the Murnaghan equation of state [19].

Fig. 4. Plot of the negative of the cohesive of CaO at fixed lattice constantE (a = 4.8 Å) as shown in Fig. 3, showing the dependence on the
plane wave convergence parameter Gcut_LOW for the 4 different choices for the O basis and projector functions.

Fig. 5. Plot of the logarithmic derivatives of thel = 1 (p) radial wavefunctions for O as a function of energyE. Results of all-electron
wavefunctions are compared with wavefunctions obtained from solving the atomic PAW equation (21), comparing two different choices of
projector and basis functions.
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at rc = 1.4 bohr. The results generated with a single basis function start to diverge from all-electron logarithmic
derivatives for energiesE > 1 Ryd. This is true for the exponential shape function (not plotted) as well as the
squared sinc shape function shown in the plot. The use of a secondl = 1 basis function brings the PAW result into
agreement with the all-electron logarithmic derivatives forE values at least up to 5 Ryd. Apparently, as shown
in Table 1, this behavior of the logarithmic derivatives atE > 1 Ryd. Does not appreciably effect the calculated
equilibrium properties of CaO, however.

Another consideration in the choice of{rac } is the possibility of the appearance of “ghost” states which has been
well-characterized by Gonze and co-workers [20,21] for separable Hamiltonians and also plagues other electronic
structure methods [22]. For non-local pseudopotentials of the Kleinman–Bylander [23] form, guidelines have been
developed by Gonze and co-workers [20,21] for avoiding these problems. These guidelines, could be applied to the
PAW formalism, however, since both the local and non-local parts of the Hamiltonian are updated during the SCF
cycle, for a given set of projector and basis functions, the appearance of ghost states can be material dependent. In
our experience, reducing the{rac } values is an effective method of getting rid of ghost-state instabilities.

3. Description of the programs

3.1. atompaw

All data within the program are expressed in Rydberg atomic units unless otherwise stated. The program input is
discussed in Section 4 below. In order to simplify the operation, some integration variables have been preset. Some
of these may need to be tested for accuracy or adjusted for some compilers. For example, the numerical integrations
are performed on a range of 50 bohr using 20 000 integration points and a convergence tolerance of 10−15. On some
compilers, we have had to increase the tolerance slightly. These parameters are set in the subroutine dfatom.f90.4

At the end of the calculationatompaw generates an output summary file, several diagnostic data files, and an
atomic data file which is used by thepwpaw program. The atomic data file is named [atomic symbol].atomicdata
and is organized as follows. The set of radial projector and basis functionsp̃ni li (r), φni li (r), φ̃ni li (r) are each
tabulated on a uniform radial meshr = νh, where 0� ν � (MESH_SIZE−1). Here the “MESH_STEP” parameter
h is chosen so thatrc = (MESH_SIZE− 1)h. Theφ̃ni li (r) basis functions are also needed in a larger radial range
for generating an initial guess of the eigenstates of the system. For this purpose, a second radial mesh is defined
with the formr = νhLCAO with 0 � ν � (LCAO_SIZE− 1).

Single valued data are listed in the following form.

KEYWORD value

Table 2 enumerates these keywords and their meanings. The last entry is the total valence energy of the atom
Ea

atom which is used to calculate the cohesive energy of a multi-atomic system.
Also in the [atomic symbol].atomicdata file, multiple value data are listed in the form:

KEYWORD Index
list of values

END

The “Index” is necessary for some of the keywords, but not others. Table 3 summarizes these keywords for the
multiple value data. The form of the matrix elements listed in the tables have been defined in earlier work with a

4 In the current version of the code, a uniform radial mesh is used to represent all functions. This choice is ideal for processing all the smooth
functions. By choosing a relatively fine mesh and by using high order integration algorithms, the uniform mesh can also work well for the
all-electron functions. For example, the Numerov algorithm [24] is used to integrate the Schrödinger equation. The preset mesh size has been
tested for elements through the 5th row of the periodic table. For heavier elements, the errors of neglecting the relativistic effects are probably
comparable to integration errors.
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Table 2
List of keywords for single value data in the [atomic symbol].atomicdata file. Examples are taken from
calculation for O

Keyword Example Description

ATOMTYPE O atomic symbol

ATOMIC_CHARGE 8 Za

CORE_CHARGE 2.0 Qa
core

RC 1.41 rac

VLOC 0.0 Va
0

SHAPE_TYPE sinc2 “sinc2” or “exshape”

MESH_SIZE 565 number of mesh points for 0� r � rac

MESH_STEP 0.0025 ha

LCAO_SIZE 642 number of LCAO mesh points

LCAO_STEP 0.0125 haLCAO

BASIS_SIZE 4 total number ofni li ’s for atoma

OVERLAP_SIZE 6 number ofOa
ni linj lj

matrix elements

DENVHAT_SIZE 13 number ofnaL
ni linj lj

matrix elements

HARTREE_SIZE 73 number ofV aL
ni linj lj ;nklknl ll matrix elements

ENERGY −31.70159 valence total energy of atom,Ea
atom

END end of data set

Table 3
List of keywords for multiple value data in the [atom symbol].atomicdata file

Keyword Index Description

ORBITALS li , 1� i � BASIS_SIZE

TPROJECTOR i p̃ani li
(νh) (MESH_SIZE entries for eachi)

TPHI i φ̃ani li
(νh) (MESH_SIZE entries for eachi)

PHI i φani li
(νh) (MESH_SIZE entries for eachi)

CORE_DENSITY nacore(νh) (MESH_SIZE entries)

SHAPE_FUNC ka(νh) (MESH_SIZE entries)

LCAO_TPHI i φ̃a
ni li

(νhaLCAO) (LCAO_SIZE entries for eachi)

OVERLAP_MATRIX Oa
ni linj li

(OVERLAP_SIZE entries)

KINETIC_ENERGY_MATRIX Ka
ni linj li

(OVERLAP_SIZE entries)

V_ION_MATRIX [vat]ani li nj li (OVERLAP_SIZE entries)

DENSITY i j L naL
ni linj lj

(DENVHAT_SIZE entries)

V_HAT i j L v̂aLni linj lj
(DENVHAT_SIZE entries)

V_HARTREE i j k l L V aL
ni linj lj ;nklknl ll (HARTREE_SIZE entries)

HAT_SELF-ENERGY La
max LÊ aL (La

max+ 1 entries)
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Table 4
List of plotable output files foratompaw

File name Data columns Plotting script

wfni r φani li
(r) φ̃ani li

(r) p̃ani li
(r) plotwfn i (i = 1, . . .)

wfnri r φa
ni li

(r)/r φ̃a
ni li

(r)/r p̃a
ni li

(r)/r

density r ncore(r) n(r) ñ(r) plotdensity

potential r veff(r) ṽeff(r) plotpotential

logderiv.l E (dΨEl/dr)/ΨEl(rc) (dΨ̃El/dr)/Ψ̃El(rc) plotlogderiv l (l = 0, . . .)

tprod.i q Fni li (q)

pj.i q ¯̃p ni li
(q)

tphij.i q
¯̃
φ ni li

(q)

few modifications described as follows. The matrix elements which are diagonal in theli andlj quantum numbers,
Oa

ni linj li
andKa

ni linj li
, are defined in [10, Eqs. (A9) and (A10)], respectively. The ionic and local potential matrix

elements have been combined into a single term defined according to:

[vat]ani linj li ≡
rac∫

0

dr
(
φa
ni li

(r)vion(r)φ
a
nj li

(r)− φ̃a
ni li

(r)ṽloc(r)φ̃
a
nj li

(r)
)
. (26)

The matrix elements which depend on a “total” angular momentumL, naLni linj lj , v̂aLni linj lj , andV aL
nilinj lj ;nklknl ll are

defined in [10, Eqs. (A13), (A16), and (A17)], respectively. Because of the new form of the moments of the
compensation charge density (14), the Coulomb self-energy [10, Eq. (20)] can be determined by summing over
contributions from the tabulated momentŝEaL defined by

Ê aL ≡ 1

2

∫
d3rd3r ′ gLM (r)gLM (r′)

|r − r′| . (27)

3.2. Gnuplot scripts for plotting output files

Several files are generated byatompaw which are designed to be used for diagnostic purposes. Table 4 lists their
names, columnar data, and calling sequence for use of supplied script which is designed to be used with the Unix
packagegnuplot.

The Fourier transform results are unfortunately only useful for the bound-state basis functions, since the Fourier
transforms of the continuum functions are, in principle, delta functions in wave vector, but are not properly
calculated in the program.

4. Sample input and output

The programatompaw was designed to be run interactively. However, since it is often necessary to optimize the
parameters, it is convenient to use an input file. Sample input files for some of the O examples are shown in Figs. 6
and 8, with the corresponding output summary files in Figs. 7 and 9, respectively. In addition to the summary file,
the program generates a number of additional output files as described in Section 3.2. For each new material or
parameter set, it is therefore desirable to run the program in an appropriately named subdirectory.
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Fig. 6. Input data for O projector and basis functions corresponding to “sinc”, rc= 1.4 (×2) case.

The following shows a portion of an interactive run of the program for the case described above as “sinc”
rc = 1.4 (×2). The lines beginning with>> denote input data and generates the same results as the input file
shown in Fig. 6.

enter energy output file name
>>0
enter atomic number

>>8
Calculation for atomic number = 8
enter maximum principle quantum numbers for s,p,d,f,g

>>2 2 0 0 0
ns np nd nf ng = 2 2 0 0 0
3 orbitals will be calculated
Below are list the default occupations
n 1 occupancy
1 0 2.000000E+00
2 0 2.000000E+00
2 1 6.000000E+00
enter np 1 occ for all occupations for all revisions
enter 0 0 0. to end

>>2 1 4
>>0 0 0
Corrected occupations are:
n 1 occupancy
1 0 2.000000E+00
2 0 2.000000E+00
2 1 4.000000E+00
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Fig. 7. Output summary file for O projector and basis functions corresponding to “sinc”, rc= 1.4 (×2) case.

nuclear charge = 8
electronic charge = 8.00000000000000000
net charge = 0.000000000000000000E+00
.........
calculation converged in 12 iterations

for nz = 8
delta(density) = 0.303518224183143697E-13

results for loop = 12
n l occupancy energy

1 0 2.0000000E+00 -3.7516303E+01
2 0 2.0000000E+00 -1.7424442E+00
2 1 4.0000000E+00 -6.7652133E-01
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Fig. 8. Input data for O projector and basis functions corresponding to “exp”, rc= 1.4 case.

Total energies
One-electron contribution: -81.2235788564238845
Coulomb contribution : 72.6579980854421876
Exch-correl contribution : 4.94019038202986316
Total : -148.941386559836189

for each state enter c for core or v for valence
1 1 0 2.0000000E+00 -3.7516303E+01

>>c
2 2 0 2.0000000E+00 -1.7424442E+00

>>v
3 2 1 4.0000000E+00 -6.7652133E-01

>>v
.........
etotal = -148.941386564459066
evale = -31.7015931876238355
default shape function is sinc**2 and default vlocamp=0
input "ipass" to continue or "vloc0" or "exshape"

>>ipass
response ipass
enter maximun 1 for basis functions

>>1
lmax = 1

enter rc
>>1.4

rc 1.39999999999999991
adjusted rc 1.40999999999999992

iiirc,rc = 564 1.40999999999999992
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Fig. 9. Output summary file for O projector and basis functions corresponding to “exp”, rc= 1.4 case.

.........
Calculating basis functions using Blochl’s method
basis functions:
No. n l energy occ
1 2 0 -1.742444E4+00 2.000000E+00

For l = 0 there are currently 1 basis functions
enter y to add additional functions or n to go to next l

>>y
enter energy for generalized function

>>7
2 999 0 7.000000E+00 0.000000E+00

For l = 0 there are currently 2 basis functions
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enter y to add additional functions or n to go to next l
>>n

3 2 1 -6.765213E-01 4.000000E+00
For l = 1 there are currently 1 basis functions
enter y to add additional functions or n to go to next l

>>y
enter energy for generalized function

>>7
4 999 1 7.000000E+00 0.000000E+00

For l = 1 there are currently 2 basis functions
enter y to add additional functions or n to go to next l
>>n
completed phi basis with 4 functions
............

projectors converged with loop,delta = 7 0.262620561838618066E-09
total number of basis functions = 4
total number of bound valence functions = 2
error for io,l = 1 0 0.443491001301393739E-12
error for io,l = 2 1 0.266937351129509226E-13
calculating Fourier transforms of projector functions
calculating Fourier transforms of smooth basis functions
calculating Fourier transforms of tp*tphi products
calculating logderivs for prepared basis set
calculating log derivatives at irc 1.40000000000000013
enter atomic symbol for atomdata file name

>>0
8 2.0000000000000E+00 14 ; nz,zcore,itype
564 2.50000000000000005E-03 1.40000000000000013E+00 ; iiirc,h,rc
4 0 0 1 1

Calculating Fourier transform for tphilcao
201 7.5000000E-02 ;nq,hq

ecoul = 18.7714963667447172
6 ; # l-diagonal matrix elements

13 ; # l-dependent matrix elements
73 ; # Hartree matrix elements

atomic energy calculated for following configuration
1 2 0 2.0000000E+00 -1.7424442E+00
2 2 1 4.0000000E+00 -6.7652133E-01

zvale = 6.00000000000000000
2 0 2.0000000E+00
2 1 4.0000000E+00

nuclear charge = 8
core charge = 1.99999999999999334
valence electronic charge = 6.00000000000000000
.............

evale from matrix elements -31.7015915615520711
evale from matrix elements -3.17015915615520711E+01

enter c to continue or e to exit
>>c
for each old n l occ eig listed, enter new occ
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1 2 0 2.0000000E+00 -1.7424449E+00
>>2

2 2 1 4.0000000E+00 -6.7652016E-01
>>4
zvale = 6.00000000000000000
2 0 2.0000000E+00
2 1 4.0000000E+00

nuclear charge = 8
core charge = 1.99999999999999334
valence electronic charge = 6.00000000000000000
.............

total valence energy -31.7015915606067935
enter c to continue or e to exit

>>c
for each old n l occ eig listed, enter new occ
1 2 0 2.0000000E+00 -1.7424449E+00

>>2
2 2 1 4.0000000E+00 -6.7652016E-01

>>3
zvale = 5.00000000000000000
2 0 2.0000000E+00
2 1 3.0000000E+00

nuclear charge = 8
core charge = 1.99999999999999334
valence electronic charge = 5.00000000000000000
net charge = 1.00000000000000666
.............

total valence energy -30.4820270959904320
enter c to continue or e to exit

>>e

5. Conclusions

We have successfully used theatompaw code for several different types of materials including metals, insulators,
and transition metal materials. In general, we find that we must adjust the choice of the basis set andrac according
to the type of material and the accuracy needed for the calculation. For example, for ionic materials it may be
necessary to include more upper core states in the basis set, while for elemental materials these may not be
needed. In general, we iteratively check the following quantities before accepting a given set of projector and
basis functions.

(1) The PAW logarithmic derivatives for each atom should agree with the all-electron values within the energy
range of interest.

(2) The core electron densityncore should be sufficiently small forr > rac .
(3) The plane-wave cutoffs needed to converge the calculation (which can be determined with the help of the

Fourier-space functionsFni li (q) (Eq. (25))), should be consistent with the computer resources available for
the solid state calculations.
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(4) For the material of interest or for a simpler material containing the same elements, a solid state calculation
(using thepwpaw code) of the cohesive energy versus lattice constant should give a reasonable value for the
equilibrium lattice constant and bulk modulus.

The authors of theatompaw are happy to receive feedback concerning the use of the program and the “art” of
choosing PAW projector and basis parameters.
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