t% Computer Physics
?ﬁ Communications

Computer Physics Communications 135 (2001) 329-347

www.elsevier.nl/locate/cpc

A Projector Augmented Wave (PAW) code
for electronic structure calculations, Part I:
atompaw for generating atom-centered functions

N.A.W. Holzwarth®*, A.R. TacketP, G.E. Matthew#

@ Department of Physics, Wake Forest University, Winston-Salem, NC 27109, USA
b Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235, USA

Received 21 July 2000; accepted 26 October 2000

Abstract

The computer programompaw generates projector and basis functions which are needed for performing electronic structure
calculations based on the Projector Augmented Wave (PAW) method. The program is applicable to materials throughout the
periodic table. For each element, the user inputs the atomic number, the electronic configuration, a choice of basis functions, and
an augmentation radius. The program produces an output file containing the projector and basis functions and the corresponding
matrix elements in a form which can be read be pivpaw PAW code. Additional data files are also produced which can be
used to help evaluate the accuracy and efficiency of the generated functid®81 Elsevier Science B.V. All rights reserved.
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calculations within density functional theory, combining some ofthe due to the neglect of relativistic effects in this version of the code.
best features of pseudopotential and all-electron approaches. Devel-The local density approximation (LDA) is coded for the exchange-
oping a procedure for constructing the projector and basis functions correlation functional in this version of the code; other function-
for a PAW calculations is similar to the challenge of constructing als, such as the generalized gradient approximation could easily be
of pseudopotentials for a pseudopotential calculation. The construc- added.

tion scheme used in the present scheme is very similar to the one  Also, in this version of the code, it is assumed that electron den-
originally suggested by Bléchl and has now been demonstrated to sity due to frozen core electrons is contained within the augmen-

work well for a number of complex materials. tation sphere. This assumption obviates the need for pseudo core
wave functions or core tail density functions. The accuracy of this
Method of solution assumption can by controlled by including upper core states within

The method starts with a self-consistent all-electron atomic structure the PAW basis set.
calculation within the framework of density functional theory. The

projector and basis functions are derived from the eigenstates of the Typical running time
all-electron atomic Hamiltonian. They are determined by iteratively 10 minutes or less.
solving radial differential equations.

Unusual features of the program

Restrictions on the complexity of the program Some scripts are included to make it easy to generate plots of the
All atoms in the periodic table can be treated with this approach, al- output results using the Unix packageuplot.

though those with high atomic numbers will have systematic errors

LONG WRITE-UP

1. Introduction

Since the introduction of the notion of the “norm-conserving” pseudopotential by Hamann, Schliter, and
Chiang [1] and Kerker [2], efforts have been made to perfect the physical and numerical accuracy of the
pseudopotential formalism. While a table of pseudopotentials for all of the elements in the periodic table
developed by Bachelet, Hamann, and Schliter [3] has been well-used, many workers have instead developed
modified functional forms, such as the generalized pseudopotential form of Hamann [4] and Bléchl [5], the
plane-wave optimized form of Troullier and Martins [6], or the soft-pseudopotential form of Vanderbilt [7],
which can be optimized for a particular material and computational technique. The computer code for generating
pseudopotentials for elements throughout the periodic table, recently released by Fuchs and Scheffler [8],
implements many of the ideas that have helped the development of the pseudopotential techniques during the
past 20 years.

The Projector Augmented Wave (PAW) approach developed by Bléchl [9] goes beyond the pseudopotential
approach and retains information about the all-electron calculation without significant additional computation.
The problem of constructing the projector and basis functions needed for the PAW technique is very similar to
the problem of constructing local and non-local pseudopotentials. In addition to Bléchl's original construction
procedure, several others [10-12] have been suggestedatdimpaw code uses a procedure similar to that
originally suggested by Blochl. It generates an output that is used kpwipaw [13] code and additional outputs
that allow the user to assess the accuracy and efficiency of the generated functions.

In this paper, we briefly present the formalism in Section 2.1 and show several examples which illustrate the
choice of parameters in Section 2.2. A description of dtempaw and related programs is given in Section 3.

A description of the input and output fatompaw is given in Section 4. Section 5 contains a few concluding
remarks.
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2. PAW basis and projector functions
2.1. Formalism

PAW calculations require a set of basis and projector functions which are denoted (in the notation of previous
work [9-12]) |¢7 (), |¢3§’(r)), and|p{(r)), for the all-electron basis functions, pseudopotential basis functions,
and projector functions, respectively. Here the “a” superscript denotes the atom index (which is suppressed in most
of the remainder of this section), and thé Subscript represents the atomic quantum numbgrs, andm; . Since
these function are constructed from equations for a spherical atom, each can be written as a product of a radial
function times a spherical harmonic function, such as:

ol
9= [0, ) = T, ) )

The quantum number; is used to enumerate the radial functigifs (), ‘2’3-1» (r), andp; , (r) for a given angular
momentuni;. It often corresponds to the principal quantum number for the state but also can enumerate generalized
functions needed for the basis [9]. Although the PAW method works using any of a variety of basis and projector
functions, the efficiency and accuracy of the calculation are affected by this choice. In earlier work [10,11] we
investigated several alternative construction schemes. However, we found a slight modification of the original
scheme developed by Bléchl [9], to be the most robust.

The starting point of the construction process is an all-electron self-consistent solution of the Schrédinger
equation for the reference atom or ion. It is assumed that the total electron density can be partitioned into a
core electron densitycore(r), corresponding tacore €lectrons and a valence electron density). The core
densityncore(r) is assumed to be fixed (“frozen”) in the same form in the atom as it is in the solid. Thus, all of
the calculational effort can be focused on the valence electrons. For some materials, especially transition metals
or ionic compounds, it is prudent to extend the notion of “valence” electrons beyond the chemical definition to
include upper core states. It is for the purpose of representing these generalized valence electrons in the atom and
in the solid that we construct the basis and projector functions.

The all-electron basis function|$5i°(r)) are valence and continuum eigenstates of the Kohn—-Sham [14]
Hamiltonian. Here the superscript “0” is used to distinguish these initial basis functions from the final
orthogonalized ones.

H(D)|g () =si[¢0 1), @)
The Hamiltonian is given in terms of the self-consistent valence dem@ijyby:

hZ
H(r) = ——V2+vei(r), where
2m

/ 3
Veff(r) = vion(r) + eZ/ d*r’ |rng I’)’| + ch[ncore(r) + n(r)]
Herevion(r) denotes the ionic Coulomb potential
7€ '
Uion(")ZT‘l'ez/dBr/’%E(:q), (4)

with Z denoting the nuclear charge. The functjog denotes the exchange correlation functional. In the present
work, we used the local density approximation (LDA) form of Perdew and Wang [15], but other forms can be
easily added to the code. Self-consistency implies that the valence density and the valence basis functions are
related according to:

b0, (DI
n(r):anili#7 (5)
n,'l,’

wherew,,;; denotes the occupancy of the orbita}/;” which can be zero, especially for generalized functions.



332 N.A.W. Holzwarth et al. / Computer Physics Communications 135 (2001) 329-347

The second consideration in constructing the basis and projector functions is to choose an appropriate
augmentation radius.. This radius should be small enough so that for all the materials to be studied with these
functions, the enclosing spheres do not overlap. On the other hand, it should be large enough so that core density
neore(r) is well contained withinr,. 1

In Bléchl's pseudo-function construction scheme, the smoothness of the functions is controlled by a shape
functionk(r) which vanishes outside the augmentation region. Some possible choices of shape functions are:

[Sin(ﬂr/rc)]2
A _ forr <re,
k(ry=e"0/9" or k@)= (mr/re)

0 forr >r.,

(6)

where is typically 6. The squared sinc function form is generally found to have slightly better convergence
properties in Fourier space than those of the exponential form.

The pseudo-basis functior[té?(r)) are found by solving a self-consistent Schrodinger-like equation involving
the “smooth” Hamiltoniand . The equation takes the form:

(H(r) — &) |$0(0) = Cik(r)|62(1)). )
In this equationg; is fixed at the all-electron eigenvalue found in Eq. (2), whilgis to be determined. In
numerically integrating the radial part of this equaﬂondﬁr, (r), the coefficient; is adjusted so tha:ol (r) has
the correct number of nodes for edcbalue (zero nodes for the basis function with the lowest one-electron energy

en;1;, iIncremented by one node for each additional basis function at higher one-electron energies). In addition, the
coefficientC; is adjusted so tha&,?i,i (r) satisfies the boundary condition:

@2, () =92, (r) Torr>re. (8)

In practice, this is achieved by iterating Eq. (7) with variation€jrso that the logarithmic derivatives q)f (re)

and¢> (rc) are equal, following the approach described in Hartree’s text [16]. The smooth Ham|lton|an used in
Eq. (7) is given by

~ K2

H(@)= —2—v2 + eft(r), where

a(r') +n(r') ~
Deff (r) = Dloc(r) + € / d*r ==t px[A(r)]-
In this expression for the smooth effective potential, the tégy(r), denotes a local potential which vanishes
outside the augmentation region. In the present work, this contribution is constructed in terms of the shape function:

Vloc(r) = Vok(r), (10)

where)) is a chosen amplitude. In our experience, most systems are not sensitive to this choice, however for highly
ionic materials, the best choice fo seems to be the value which makes the non-local coefficigrin Eq. (7)

vanish for the index, corresponding to the valencestate of each material. An easy way to accomplish this, is

to run theatompaw program once witi/p = 0 to determine the value aﬂ’o and then run thatompaw program

a second time with)p = —C0 In fact, within numerical accuracy, the baS|s functions and projector functions are

invariant to the choice of. From this point of view, we see that the role)fis to adjust the strength of the local
potential contributions relative to the strength of the non-local contributions for eachZatom.

©)

1In the present version of the code we set the core tail function defined in Ref. [10] identically to zero since we find that whenever the core
density has a contribution which is appreciable ffor r., it is a better approximation to represent those upper core electrons as generalized
valence electrons.

2 This procedure differs from that of Bléchl [9] who determirigs. (r) by unscreening a constructed pseudopotential.
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At self-consistency, the pseudo-densgity) in Eq. (9) is determined from the pseudo-basis functions

|¢ (r)l2
A(r) =Y wap —a— o (11)

nil

The additional Coulombic contribution in Eq. (9) denotedrly), represents the compensation charge density
which is needed to correct the total atomic charge. This charge density is spherically symmetric for the atom and
can be written:

n(r) = Qoogoo(r), (12)

where the monopole momefy is
000=—Z + Qcore+ / r[n(r) — (). (13)

The functional form of atom-centered moments of the compensation charge is now chosen to be proportional to
the shape function:

gLM(r)—NLrLk(r)YLM(f) where

14
[Var N ] / drret 2Lk (r). (14)

Here,Y m(f) denotes the spherical h~armonic function avid denotes a normalization factor.
Once the pseudo-basis functiohﬁ?)(r) have been determined by self-consistently solving Eq. (7), the
corresponding projector functions are formed according to:
_ k()IgPn)
PP) = —=5 =5~
(7 |klg;)
This means that these initial pseudo-basis functions and the corresponding projector functions are normalized
according to

(15)

(@7157)=1, (16)
and related to the smooth Hamiltonian according to the identity:
(H() =) |@00) = [FPONSL|H — e[ 7). (17)

The final basis and projector functiofig; (r)), |¢; (r)), | pi (r))} are formed from the initial functionﬁqﬁo(r))
|q3?(r)) |pl°(r))} by a Gram-Schmidt orthogonalization procedure as described in Eqgs. (91)—(96) of Ref. [9].
Specifically, for each angular momentum quantum nurhbee denote the successive radial functions with indices
ni,n2, ..., etc. The first set of basis and projector functions is given by the initial functions:

Pt ()= pYy(r). uu(r) =2 (1), and @y(r) =gy, (r). (18)
If there is a second radial basis function for thathe final function is orthonormalized with respect to the first
according to:
Pt (r) = Fuqt [P0 ) = Pyt () Guat | 50,0 ]
Bat (1) = Fougt [ () = gt (W) (Bt B0, (19)
Guat (1) = Fougt [ () = gt (1) (Bt B
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where

Fat = (L= @1 uat) Bt 50,0) 2 (20)

If there were additional radial basis functions for thathey would be orthonormalized in a similar way. In our
experience, and in that of previous workers [5,17], one or two radial basis functions are usually sufficient to span
the Hilbert space of smooth functions within each atomic sphere.

In terms of these basis functions, the generalized eigenvalue equation for the PAW formalism can be written

HPAY() | () = EO|WE (), (21)
where
HPAY = () + ) | 0) (8 1H®199) — (& 1H 1) (4], (22)
aij
and
O=1+4) |5 )((¢'1¢5) — (' 16))(55]. (23)
aij

The eigenstate@E(r)) of Eq. (21) are related to the eigenstates of the all-electron Hamiltonian, according to:

W)= ZEm)+ > (I¢1) — 1§40 (p¢ | PE). (24)
at

within the accuracy of the PAW representation. For the case of a spherically symmetric atom, the sitei;ndex
trivial and all matrix elements are diagonalljm:; indices. By construction, the valence density) (Eq. (5))
and pseudo-densify(r) (Eq. (11)) are expressed in terms of the initidl, () and4? , (r) basis functions which
determine the all-electron (2) and and smooth (9) Hamiltonians. In turn, these Hamiltonians are used to generate
these functions and the projectors. It can be shown that, after the orthonormalization procedure of Egs. (18),
(19), and (20), the initial pseudo—wavefunctic)tﬁg(r)) are eigenstates of the atomic PAW Hamiltonian (21), with
corresponding eigenvalues of the all-electron Hamiltonian (2). More generally, the Hamiltoni&fs and He
which appear in Eq. (22) are defined in terms of matrix elements evaluated using the orthogonalized basis functions
{9} and{&;’} [9,10,13]. The construction procedure ensuresiHat" reproduces the same eigenvalue spectrum
as the all-electron Hamiltonian within the energy range spanned by the basis functions.

2.2. Examples

Fig. 1 shows an example of a set of projector and basis functions generated for Mo. These functions have been
successfully used in the study of the electronic structure of CalMar@ related materials [18]. In this example
there are two projector and basis sets for eaghlue. For each, the firsté,; () and p,;(r) functions have no
nodes, while the functions for the second set have one node.

In general, as in the construction of pseudopotentials [8], one often has to balance accuracy versus efficiency
in order to generate the best basis and projector functions for a given material. Greater accuracy is achieved by
choosingr. to be small and faster convergence in the plane wave expansion is obtained by chotsing large.

To quantify the plane wave convergence, we can define a Fourier-space function:

Fuits (@) = But @ w1, ()42 (25)

Here 1:7,”,[. (¢) and (;"ili(q) represent the Fourier transforms of the radial functighg, (r) and ¢, (r),
respectively. The integral of,;;; (¢) with respect tq; is related, through Parseval’s relation to the radial integral
involved with calculating the overlap of a projector function with the corresponding pseudo-basis function. The
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0.0 0.5 1.0 0.0 0.5 1.0
r (bohr) r (bohr)

Fig. 1. Plot of radial projector and basis functions for Mo generated using the squared sinc form of the shape funetienlabdohr. For
eachnl, the,; (), ¢, (r), and j,; () functions are plotted with solid, dottes, and dashed lines, respectively.

non-zero range of,,;; (¢) is a good indication of the plane wave convergence of the overlap int@@‘r@nk) of
the projector function with a Bloch pseudo-wavefunction.

We illustrate the plane wave convergence for theb2sis functions for O in Fig. 2 where the choicesof 1.0
and 1.3 bohr and the effects of the exponential (“exp”) and squared sinc (“sinc”) functional forms for the shape
functionk(r) are compared. The “exp” form was chosen witk: 6 ando = 0.65r, (so thatk(r.) ~ 1 x 1079). In
Fig. 2 we see that the functions generated wjtk: 1.3 bohr converge much more rapidly that those generated with
r. = 1.0 bohr. We also see that the function formed using the exponential shape function has a small oscillation at
largeq, while the function formed with the squared sinc shape function goes smoothly to zero.

To further assess these choices, we have carried out calculations on the electronic structure of CaO using these
functions with thepwpaw [13] code. For the purpose of this test, Ca projectors and basis functions where fixed.
They were constructed with the “sinc” shape functions with= 1.5 bohr, including 3, 4s, 3p, ¢p, and 3
functions2 Four different choices for the O projector and basis functions were studied including the exponential
and squared sinc shape functions ane: 1.4 or 12 bohr as indicated in Table 1 and in the legends of Figs. 3, 4,
and 5. In Fig. 3, we show a plot of the negative of the cohesive energy of CaO as a function of cubic lattice constant
a. The calculated lattice constant results were fit to the Murnaghan equation of state [19]. The resulting fit values
of the lattice parameter, bulk modulus, and cohesive energy are summarized in Table 1. It is reassuring to notice
that these results are very insensitive to the choice of the projector and basis functions as they should be. The small
variations in the equilibrium cohesive energies are due to differences in the solid and atomic calculations which

3In order to ensure that the secahet 1 radial basis functions for Ca are orthogonal to theb@sis functions, it is convenient to choose a
continuum basis functioge, () which has 3 nodes well within the augmentation region in plaagsg{r) whose 3rd node is inconveniently
close to the augmentation radius.
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Fig. 2. Plot of 2, (¢) defined in Eq. (25) for the 2 states of O plotted as a function @f comparing results for. = 1.0 andr. = 1.3 bohr.
Insert compares results on an expanded scale using two forms for weight furigiipas indicated.

Table 1

Comparison of the equilibrium fit parameters for CaCEg (cohesive energy)B (bulk
modulus), andug (lattice constant) for 4 choices for projector and basis functions of O,
corresponding to 4 curves plotted in Fig. 3

Label (n;1;}) Eq (eViatom)  ag (R) B (GPA)
“exp”, rc=1.4 %, 2p 7.176 4.704 126
“sinc”, re=1.4 %, 2p 7.174 4.705 126
“sinc”, rc=1.2 %, 2p 7.185 4.703 127
“sinc”, re=1.4 (x2) 25, €5, 2p, €p 7.195 4.700 127

cancel each other slightly differently in each case. The equilibrium lattice constant varies by less that 0.1% and the
bulk modulus by less than 1%.

On the other hand, the number of plane-waves needed to converge a calculation is more sensitive to these choices
as seen in Fig. 4, where the negative of the cohesive energy is plotted versus the plane-wave cutoff parameter
(labeled “Gceut_LOW?” in correspondence with the notation used inpthaw code). Here we see that the sinc
shape form converges more rapidly as a function of plane-wave cutoff than does the exponential shape form even
when additional basis functions are addedfo&= 1.4 bohr. In fact, the sinc shape function with= 1.2 bohr
results converge at approximately the same plane-wave cutoff as those using the exponential shape function with
ro = 1.4 bohr for this example.

The accuracy of a calculation can also be sensitive to the choice of basis function. In Fig. 5 we show the
calculated logarithmic derivatives for generaliZed 1 (p) radial functions of O for projector and basis functions
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Fig. 3. Plot of the negative of the cohesive energy of CaO as a function of the cubic lattice parariétese results were obtained using the
pwpaw code [13] with 4 different choices for the O basis and projector functions as indicated. The lines through the symbols represent fits to

the Murnaghan equation of state [19].

Fig. 4. Plot of the negative of the cohesive of CaO at fixed lattice con&tant= 4.8 A) as shown in Fig. 3, showing the dependence on the
plane wave convergence parameter Geut_LOW for the 4 different choices for the O basis and projector functions.
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Fig. 5. Plot of the logarithmic derivatives of tHe= 1 (p) radial wavefunctions for O as a function of enerfly Results of all-electron
wavefunctions are compared with wavefunctions obtained from solving the atomic PAW equation (21), comparing two different choices of

projector and basis functions.
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atr. = 1.4 bohr. The results generated with a single basis function start to diverge from all-electron logarithmic
derivatives for energieg > 1 Ryd. This is true for the exponential shape function (not plotted) as well as the
squared sinc shape function shown in the plot. The use of a séeoidasis function brings the PAW result into
agreement with the all-electron logarithmic derivatives foralues at least up to 5 Ryd. Apparently, as shown

in Table 1, this behavior of the logarithmic derivativeskat- 1 Ryd. Does not appreciably effect the calculated
equilibrium properties of CaO, however.

Another consideration in the choice fof'} is the possibility of the appearance of “ghost” states which has been
well-characterized by Gonze and co-workers [20,21] for separable Hamiltonians and also plagues other electronic
structure methods [22]. For non-local pseudopotentials of the Kleinman—Bylander [23] form, guidelines have been
developed by Gonze and co-workers [20,21] for avoiding these problems. These guidelines, could be applied to the
PAW formalism, however, since both the local and non-local parts of the Hamiltonian are updated during the SCF
cycle, for a given set of projector and basis functions, the appearance of ghost states can be material dependent. In
our experience, reducing the?} values is an effective method of getting rid of ghost-state instabilities.

3. Description of the programs
3.1. atompaw

All data within the program are expressed in Rydberg atomic units unless otherwise stated. The program input is
discussed in Section 4 below. In order to simplify the operation, some integration variables have been preset. Some
of these may need to be tested for accuracy or adjusted for some compilers. For example, the numerical integrations
are performed on a range of 50 bohr using 20 000 integration points and a convergence tolerant® 6ffome
compilers, we have had to increase the tolerance slightly. These parameters are set in the subroutine dfatom.f90.

At the end of the calculatioatompaw generates an output summary file, several diagnostic data files, and an
atomic data file which is used by tipgvpaw program. The atomic data file is named [atomic symbol].atomicdata
and is organized as follows. The set of radial projector and basis fungiigné-), én,i, (), ¢n,1;(r) are each
tabulated on a uniform radial mesh= vh, where 0< v < (MESH_SIZE-1). Here the “MESH_STEP” parameter
h is chosen so that. = (MESH_SIZE— 1)A. Theq?n,.li (r) basis functions are also needed in a larger radial range
for generating an initial guess of the eigenstates of the system. For this purpose, a second radial mesh is defined
with the formr = vh cao With 0 < v < (LCAO_SIZE-1).

Single valued data are listed in the following form.

KEYWORD value

Table 2 enumerates these keywords and their meanings. The last entry is the total valence energy of the atom
EgomWhich is used to calculate the cohesive energy of a multi-atomic system.
Also in the [atomic symbol].atomicdata file, multiple value data are listed in the form:

KEYWORD Index
list of values
END

The “Index” is necessary for some of the keywords, but not others. Table 3 summarizes these keywords for the
multiple value data. The form of the matrix elements listed in the tables have been defined in earlier work with a

4n the current version of the code, a uniform radial mesh is used to represent all functions. This choice is ideal for processing all the smooth
functions. By choosing a relatively fine mesh and by using high order integration algorithms, the uniform mesh can also work well for the
all-electron functions. For example, the Numerov algorithm [24] is used to integrate the Schrédinger equation. The preset mesh size has been
tested for elements through the 5th row of the periodic table. For heavier elements, the errors of neglecting the relativistic effects are probably
comparable to integration errors.
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Table 2

List of keywords for single value data in the [atomic symbol].atomicdata file. Examples are taken from

calculation for O

Keyword Example Description
ATOMTYPE (0] atomic symbol
ATOMIC_CHARGE 8 z4
CORE_CHARGE 2.0 0%re
RC 1.41 ré
VLOC 0.0 Vi
SHAPE_TYPE sinc2 “sinc2” or “exshape”
MESH_SIZE 565 number of mesh points forQ- < ré
MESH_STEP 0.0025 h
LCAO_SIZE 642 number of LCAO mesh points
LCAO_STEP 0.0125 heno
BASIS_SIZE 4 total number of;/;’s for atoma
OVERLAP_SIZE 6 number Oﬁzilinjlj matrix elements
DENVHAT_SIZE 13 number OhZiLli"jlj matrix elements
HARTREE_SIZE 73 number Wr%ﬂjl_/:nklkmlz matrix elements
ENERGY —31.70159 valence total energy of atoRf;yp,
END end of data set
Table 3
List of keywords for multiple value data in the [atom symbol].atomicdata file

Keyword Index  Description

ORBITALS li, 1<i < BASIS_SIZE

TPROJECTOR i ﬁzili (vh) (MESH_SIZE entries for eact)

TPHI i ¢g[_l[_ (vh) (MESH_SIZE entries for each)

PHI i

CORE_DENSITY
SHAPE_FUNC

LCAO_TPHI
OVERLAP_MATRIX
KINETIC_ENERGY_MATRIX
V_ION_MATRIX

DENSITY

V_HAT

V_HARTREE

HAT_SELF-ENERGY

a
Lmax

¢ (vh) (MESH_SIZE entries for each)
't

néore(vh) (MESH_SIZE entries)

k%(vh) (MESH_SIZE entries)

¢z[_l[_ (vh{ cp0) (LCAO_SIZE entries for each
o¢ (OVERLAP_SIZE entries)

n,’l,’njl,’

K¢, (OVERLAP_SIZE entries)
Jjti

nilin

[vatl® (OVERLAP_SIZE entries)

nilinjli

i j Lng,,, (DENVHAT_SIZE entries)

ijLdL . (DENVHAT_SIZE entries)
JU

nilin

.. L .
ijklL Vna,»l,»njl_,-;nklkn,l, (HARTREE_SIZE entries)

LE®L (L&, + 1 entries)
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Table 4

List of plotable output files foatompaw
File name Data columns Plotting script
wfni r 4’51 () ¢3”, (") Py g, (1) plotwfni (i=1,...)
winri by, z (r/r ¢" 5, O/ ﬁZili )/r
density r neore(r) n(r) a(r) plotdensity
potential r veff(r) Ueff(r) plotpotential
logderivi E (d¥g; /dr) /W (re) (P g /dr) /T (re) plotlogderivi (1 =0,...)
tprodi q Fn;1;(q)
pj.i q Pni; (@)
tphij.i 4 ®n1@

few modifications described as follows. The matrix elements which are diagonal/jrethd/; quantum numbers,
O 1init; andK*“ are defined in [10, Egs. (A9) and (A10)], respectively. The ionic and local potential matrix

nilinj nilin;l;?

elements have been combined into a single term defined according to:

[vatly jn 1, = f dr (¢35, (M vion(My 1, (1) = Gy 1, (N Tioc(P Py 1, (1)) (26)
0
The matrix elements which depend on a “total” angular momentun.’ linjl, A“Lln 1 a”an,z njl ey @€

defined in [10, Eqgs. (A13), (A16), and (A17)], respectively. Because of the new form of the moments of the
compensation charge density (14), the Coulomb self-energy [10, Eq. (20)] can be determined by summing over
contributions from the tabulated momem$” defined by

/d3 3y 8EM (rr)gtw; (r/)- 27)

3.2. Gnuplot scriptsfor plotting output files

Several files are generated &pmpaw which are designed to be used for diagnostic purposes. Table 4 lists their
names, columnar data, and calling sequence for use of supplied script which is designed to be used with the Unix
packagegnuplot.

The Fourier transform results are unfortunately only useful for the bound-state basis functions, since the Fourier
transforms of the continuum functions are, in principle, delta functions in wave vector, but are not properly
calculated in the program.

4. Sampleinput and output

The progranmatompaw was designed to be run interactively. However, since it is often necessary to optimize the
parameters, it is convenient to use an input file. Sample input files for some of the O examples are shown in Figs. 6
and 8, with the corresponding output summary files in Figs. 7 and 9, respectively. In addition to the summary file,
the program generates a number of additional output files as described in Section 3.2. For each new material or
parameter set, it is therefore desirable to run the program in an appropriately named subdirectory.



The following shows a portion of an interactive run of the program for the case described above as “sinc
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< 40 0ONN®O
O =N
S b O

e

g
n
n
wn

K

O WO IBNO COHE N B I

Fig. 6. Input data for O projector and basis functions corresponding to “sine?,lrd (x2) case.

o
o

Atom summary file name

Z

maximum n for s, p, d, f, g shelis
correction to maximum occupancy (n 1 occ)
end corrections

core state

valence state

valence state

use default parameters

Imax

rc

add new 1=0 basis function

energy for new 1=0 basis function
no new 1=0 basis functions

add new 1=1 basis function

energy for new 1l=1 basis function
no new 1=1 basis functions

Atom symbol

continue

new valence occupancy

new valence occupancy

continue

new valence occupancy

new valence occupancy

exit

341

rc = 1.4 (x2). The lines beginning with-> denote input data and generates the same results as the input file
shown in Fig. 6

enter energy output file nane

>>0
enter atom c nunber
>>8

Cal cul ation for atom c nunber

8

enter maxi mum princi pl e quantum nunbers for s,p,d,f, g
>>2 2000

ns npndnf ng=22000
3 orbitals will

be cal cul ated

Bel ow are list the default occupations

n

1
2
2

>>
>>

1

0
0
1

enter np 1 occ for al

enter
214
000

occupancy

2. 000000E+00
2. 000000E+00
6. 000000E+00

000. to end

Corrected occupations are:

n

NN P
= O O

1

occupancy
2. 000000E+00
2. 000000E+00
4. 000000E+00

occupations for all revisions
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nz = 8
Integration params -- n,rmax,small = 20000 5.0000000E+01 1.0000000E-15
all-electron results
core states (zcore) = 1.99999999999999334
1 1 0 2.0000000E+00 -3.7516303E+01
valence states (zvale) = 6.00000000000001332
2 2 0 2.0000000E+00 -1.7424442E+00
3 2 1  4.0000000E+00 -6.7652133E-01
evale = -31.7015931876238355
paw parameters:
shapef sinc2
1lmax 1
rc 1.40999999999999992
iiirc 564
vlocfac = 0.000000000000000000E+00
Using Blochl method

(N I R |

Number of basis functions 4

No. n 1 Energy Cp coeff
i 2 0 -1.7424442E+00 -2.3987351E+00
2 999 0 7.0000000E+00 -7.1621022E+00
3 2 1 -6.7652133E-01 8.8537607E+00
4 999 1 7.0000000E+00 1.5313909E+01

Valence states
1 2 0 2.0000000E+00 -1.7424442E+00

2 2 1 4.0000000E+00 -6.7652133E-01
pav valence energy after call to fcsepatom
valence states (zvale) = 6.00000000000000000
1 2 0 2.0000000E+00 -1.7424449E+00
2 2 1 4.0000000E+00 -6.7652016E-01
evale from sepenergyanal -3.17015915606063103E+01
evale from matrix elements -3.17015915615520711E+01
paw valence energy after call to fcsepatom
valence states (zvale) = 6.00000000000000000
1 2 0 2.0000000E+00 -1.7424449E+00
2 2 1 4.0000000E+00 -6.7652016E-01
evale from sepenergyanal -3.17015915606067935E+01
paw valence energy after call to fcsepatom
valence states (zvale) = 5.00000000000000000
1 2 0 2.C000000E+00 -2.8921118E+00
2 2 1 3.0000000E+00 -1.8078934E+00
evale from sepenergyanal -3.04820270959904320E+01

Fig. 7. Output summary file for O projector and basis functions corresponding to “sine”lrt (x2) case.
8

8. 00000000000000000
0. 000000000000000000E+00

nucl ear charge
el ectroni c charge
net charge

cal cul ation converged in 12 iterations

for nz = 8

del ta(density) = 0.303518224183143697E- 13
results for loop = 12

nl occupancy ener gy
10 2. 0000000E+00 - 3. 7516303E+01
20 2. 0000000E+00 -1.7424442E+00
21 4. 0000000E+00 -6.7652133E-01



Tot al
One
Cou
Exc
Tot
for ea
1
>>c
2
>>v
3

et ot al
eval e
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1] Atom summary file name
8 Z
22000 maximum n for s, p, d, £, g shells
214 correction to maximum occupancy (n 1 occ)
000 end corrections
c core state
v valence state
v valence state
exshape use exponential shape parameter
vlocO allow for Vloc contribution
0 Vloc amplitude
ipass set remaining parameters to default values
ipass set remaining parameters to default values
lmax
.4 rc
no new 1=0 bases functions
no new 1=1 basis functions
Atom symbol
continue

new valence
new valence
continue
new valence
new valence
exit

O WNO PN OB B

Fig. 8. Input data for O projector and basis functions corresponding to “exg?,lrd case.

occupancy
occupancy

occupancy
occupancy

ener gi es

-electron contribution: -81.2235788564238845
| onb contribution : 72.6579980854421876
h-correl contribution : 4,.94019038202986316
al . -148.941386559836189

ch state enter ¢ for core or v for
1 0 2.0000000E+00 -3.7516303E+01

2 0 2.0000000E+00 -1.7424442E+00

2 1 4.0000000E+00 -6.7652133E-01

= -148.941386564459066
= -31.7015931876238355

val ence

default shape function is sinc**2 and default vl ocanp=0

i nput
>>j pass
respon
enter
>>1
| max
enter
>>1. 4
rc 1.
adj us
iiirc,

"i pass" to continue or "vlocO0" or "

se i pass
maxi mun 1 for basis functions

=1
rc

39999999999999991
ted rc 1.40999999999999992
rc = 564 1.40999999999999992

exshape"
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nz = 8
Integration params -- n,rmax,small = 20000 5.0000000E+01 1.0000000E-15
all-electron results
core states (zcore) = 1.99999999999999334
1 1 0 2.0000000E+00 -3.7516303E+01
valence states (zvale) = 6.00000000000001332
2 2 0 2.0000000E+00 -1.7424442E+00
3 2 1 4.0000000E+00 -6.7652133E~01
evale = -31.7015931876238355
paw parameters:
shapef = exshape

Imax = 1
rc = 1.40999999999999992
iiirc = 564
gauss = 0.903788641908465973
kpow = 6
vlocfac = 0.000000000000000000E+00

Using Blochl method

Number of basis functions 2
No. =n 1 Energy Cp coeff

1 2 0 -1.7424442E+00 -1.8257615E+00

2 2 1 -6.7652133E-01 5.0134012E+00
Valence states

1 2 0 2.0000000E+00 -1.7424442E+00

2 2 1 4.0000000E+00 -6.7652133E-01
paw valence energy after call to fcsepatom
valence states (zvale) = 6.00000000000000000

1 2 0 2.0000000E+00 -1.7424449E+00

2 2 1  4.0000000E+00 -6.7652028E-01
evale from sepenergyanal -3.17015915584259957E+01

evale from matrix elements -3.17015900745049599E+01

paw valence energy after call to fcsepatom
valence states (zvale) = 6.00000000000000000

1 2 0 2.0000000E+00 -1.7424449E+00

2 2 1 4.00000C0E+00 -6.7652028E-01
evale from sepenergyanal -3.17015915584258039E+01
paw valence energy after call to fcsepatom
valence states (zvale) = 5.00000000000000000

1 2 0 2.0000000E+00 -2.8949395E+00

2 2 1 3.0000000E+00 -1.8106301E+00
evale from sepenergyanal -3.04807271708155270E+01

Fig. 9. Output summary file for O projector and basis functions corresponding to “exp"l# case.

Cal cul ating basis functions using Blochl’s nethod
basi s functions:

No. n | ener gy occ
1 2 0 -1.742444E4+00 2. 000000E+00
For | = 0 there are currently 1 basis functions
enter y to add additional functions or n to go to next
>>y
enter energy for generalized function
>>7

2 999 0 7.000000E+00 0. 000000E+00
For | = O there are currently 2 basis functions
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enter y to add additional functions or n to go to next
>>n
3 2 1 -6.765213E-01 4.000000E+00

For | = 1 there are currently 1 basis functions

enter y to add additional functions or n to go to next
>>y

enter energy for generalized function
>>7
4 999 1 7.000000E+00 0.000000E+00

For | = 1 there are currently 2 basis functions
enter y to add additional functions or n to go to next
>>n

conpl eted phi basis with 4 functions

projectors converged with |oop,delta = 7 0.262620561838618066E- 09
total nunber of basis functions = 4
total nunber of bound val ence functions = 2
error for io,I =1 0 0.443491001301393739E- 12
error for io,I =2 1 0.266937351129509226E- 13
cal cul ating Fourier transfornms of projector functions
cal cul ating Fourier transfornms of snpboth basis functions
cal cul ating Fourier transforms of tp*tphi products
cal cul ating | ogderivs for prepared basis set
calculating log derivatives at irc 1.40000000000000013
enter atom c synbol for atondata file nane
>>0
8 2. 0000000000000E+00 14 ; nz, zcore,itype
564 2. 50000000000000005E- 03 1. 40000000000000013E+00 ; iiirc,h,rc
4 0 0 1 1
Cal cul ating Fourier transformfor tphilcao
201 7.5000000E-02 ;nq, hq
ecoul = 18.7714963667447172

6 ; # |-diagonal matrix el ements
13 ; # |-dependent matrix el enents
73 ; # Hartree matrix el enments

atom c energy cal cul ated for follow ng configuration
1 2 0 2. 0000000E+00 -1.7424442E+00
2 2 1 4. 0000000E+00 -6.7652133E-01
zval e = 6. 00000000000000000
2 0 2. 0000000E+00
2 1 4. 0000000E+00

nucl ear charge =8
core charge = 1. 99999999999999334
val ence el ectronic charge = 6.00000000000000000
evale frommatrix el enents -31.7015915615520711
evale frommatrix elements -3.17015915615520711E+01
enter c to continue or e to exit
>>C
for each old n | occ eig listed, enter new occ

345



346 N.A.W. Holzwarth et al. / Computer Physics Communications 135 (2001) 329-347

1 2 0 2.0000000E+00 -1.7424449E+00

>>2
2 2 1 4.0000000E+00 -6.7652016E-01
>>4
zval e = 6. 00000000000000000
20 2. 0000000E+00
21 4. 0000000E+00
nucl ear charge = 8

core charge = 1.99999999999999334
val ence el ectronic charge = 6.00000000000000000

total val ence energy -31.7015915606067935
enter c to continue or e to exit

>>c

for each old n | occ eig listed, enter new occ
1 2 0 2.0000000E+00 -1.7424449E+00

>>2
2 2 1 4.0000000E+00 -6.7652016E-01
>>3
zval e = 5.00000000000000000
20 2. 0000000E+00
21 3. 0000000E+00
nucl ear charge =8

core charge = 1.99999999999999334
val ence el ectronic charge = 5.00000000000000000
net charge = 1. 00000000000000666

total val ence energy -30.4820270959904320
enter ¢ to continue or e to exit
>>e

5. Conclusions

We have successfully used thi®mpaw code for several different types of materials including metals, insulators,
and transition metal materials. In general, we find that we must adjust the choice of the basis-§ei@miding
to the type of material and the accuracy needed for the calculation. For example, for ionic materials it may be
necessary to include more upper core states in the basis set, while for elemental materials these may not be
needed. In general, we iteratively check the following quantities before accepting a given set of projector and
basis functions.
(1) The PAW logarithmic derivatives for each atom should agree with the all-electron values within the energy
range of interest.
(2) The core electron densiiyore should be sufficiently small far > r¢.
(3) The plane-wave cutoffs needed to converge the calculation (which can be determined with the help of the
Fourier-space functionk,,;; (¢) (Eq. (25))), should be consistent with the computer resources available for
the solid state calculations.
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(4) For the material of interest or for a simpler material containing the same elements, a solid state calculation
(using thepwpaw code) of the cohesive energy versus lattice constant should give a reasonable value for the
equilibrium lattice constant and bulk modulus.

The authors of th@tompaw are happy to receive feedback concerning the use of the program and the “art” of
choosing PAW projector and basis parameters.
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