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There has been considerable experimental and theoretical interest in synthetic materials formed
from charge transfer salts of BEDT-TTF (bis-ethylenedithio-tetrathiafulvalene). Three crystalline
forms of (BEDT-TTF)-PFs have been identified experimentally,’™ and labeled 8, €, and ¢. We have
modeled these three materials using first-principles self-consistent field methods, to determine the
optimal geometrical parameters, the densities of state, and electron density contour plots for states
near the Fermi level. The € and ( crystals are found to be metallic, while the § crystals, with twice
as many molecules per unit cell, are found to be insulating. By contrast, experimental conductivity
and optical measurements for the ¢ material® suggest a Mott insulator behavior. We examine the
Hubbard model for this system to understand both the Mott insulating behavior and the failure of

the self-consistent field methods to model it.

I. INTRODUCTION

The study of synthetic crystalline materials based on
charge transfer salts formed from organic donor molecules
and a variety of acceptor complexes has been an active
area of research for the past 30 years.®5> While an impor-
tant motivation for much of this work is due to super-
conducting properties, a rich variety of other interesting
phenomena are exhibited in these materials.®

The donor molecule bis-ethylenedithio-
tetrathiafulvalene, abbreviated as BEDT-TTF or
ET, has been used to make more than 100 different
charge transfer crystals.* In the present work, we study
three materials which have been characterized with the
stoichiometry (BEDT-TTF)-PFg. In these materials, the
donor BEDT-TTF molecules has a formal charge of +1
while the acceptor complex (PFg) has a formal charge of
—1. Three crystalline forms of (BEDT-TTF)-PFg have
been identified experimentally, and labeled &', €2, and
¢.2 The electronic properties have been characterized for
the ¢ form® which was found to be semiconducting with
a band gap of approximately 0.5 eV. Our calculational
results provide a framework for comparing the structural
and electronic properties of the three materials relative
to each other and relative to other similar materials.

Apart from the references cited above, there has been
rather little work done on the (BEDT-TTF)-PFg mate-
rials. However, there is a very large literature of work
on other BEDT-TTF materials, including several forms
of (BEDT-TTF),-PFg. Most of these materials have a
stoichiometry of two BEDT-TTF molecules for each ac-
cepter complex, so that each BEDT-TTF molecule has a
formal charge of +1/2.

Although, to our knowledge, there has been no pre-
vious theoretical work on the (BEDT-TTF)-PFg materi-
als, there have been a number theoretical studies of other
BEDT-TTF materials. Due to the complexity of these
materials, there are relatively few”® first-principles cal-

culations for the full crystals although there have been
a number of first-principles studies of the BEDT-TTF
molecule in different charge states.?!4

The outline of this paper is as follows. Section II de-
scribes the crystal structures and the molecular config-
urations for the three materials, including a comparison
of measured and calculated bond lengths. Section III de-
scribes the local density approximation analyses of the
electronic structure of the three crystal structures, in-
cluding their densities of states, band diagrams, charge
density contours for states near the Fermi level, and a
tight-binding fit of the Fermi level bands. The Hubbard
model analysis is presented in Section IV, including both
a discussion of the infinite half-filled one-dimensional case
and a more detailed analysis of the two electron dimer.
The results of quantum chemical treatments of molecu-
lar dimers of this system are presented in Section V and
related to the Hubbard dimer analysis. A summary of
the results and conclusions are presented in Section VI.

II. CRYSTAL STRUCTURES

Lattice parameters from X-ray analyses'™ are summa-

rized in Table I for the three crystalline forms of (BEDT-
TTF)-PFg: 6, ¢, and (. The € and ¢ structures both
contain one formula unit per primitive cell, while the §
structure contains two formula units and therefore has
roughly twice the primitive cell volume. The § and (
structures have a single symmetry element — inversion,
while the e structure has 4 symmetry elements including
inversion and a mirror plane or equivalently a two-fold
rotation and mirror plane.

The structure of the BEDT-TTF*+ molecular ion is
shown in Fig. 1, with atoms labels using the same con-
vention as Williams and coworkers.!®16 The main portion
of BEDT-TTF™ ion is nearly planar (even more so than
the neutral molecule as shown in Fig. 2 below), which



TABLE I: Lattice parameters for BEDT-TTF)-PF¢ crystals
determined from X-crystallography.

§° b ¢

Symmetry P1 C2/m P1
a (A) 6.4253 14.5270 6.2293
b (A) 10.7241 10.7350 7.2633
c(A) 13.049 5.9233 9.8662
a (deg) 84.084 90.000 93.898
B (deg) 82.435 105.559 93.592
7 (deg) 87.378 90.000 97.914
Volume (A?) 886.1 444.9 439.95

%Ref. 1, presumed to be room temperature.

bRef. 2, presumed to be at room temperature. The quoted lattice
constants represent the conventional unit cell, while the volume is
that of the primitive cell.

‘Ref. 3 at T=173 K.

is described in the % — § plane with %X pointing along
the long molecular axis as defined by the C2—C1 bond.
The drawing shows the structure appropriate for the e
material with four-fold 2/m symmetry about the center
of the molecule. The structure of the BEDT-TTF* ion
appropriate for the § and ¢ materials has only inversion
symmetry about the center and differs primarily in the
arrangement of the end carbon and hydrogen groups; so
that the C7—C8 and C9—C10 bonds are no longer par-
allel to the y axis.

FIG. 1: Ball and stick diagram of a BEDT-TTF+ molecule'®
defining local coordinate system and atomic labels for carbon
(C) and sulfur (S) sites. The hydrogen sites are not labeled.

In addition to the local symmetry of each BEDT-
TTFT molecule, an important characteristic of the crys-
tal is the arrangement or stacking of the molecules within
the structure.!” In order to quantify this stacking, it is
helpful to express the nearest molecule displacements,

TABLE II: Displacements (Eq. 1) of nearest neighbor BEDT-
TTF' ions expressed in terms of the distance R between
molecular centers and the corresponding X,Y, and Z com-
ponents in the local coordinate system shown in Fig. 1. All
values are taken form the crystallographic data'™ and are
listed for R < 9 A. When appropriate, the corresponding lat-
tice translation vector is listed in the second column.

Crystal lattice
Structure translation R X Y Z
é 4.88 3.14 0.16 —3.47
a 6.43 1.52 5.92 1.91
€ c 5.92 4.79 0.00 3.48
¢ a 6.23 —1.75 546 —2.44
b 7.26 6.07 —-0.93 —3.88

referenced to the molecule centers, and using the coor-
dinate system defined in Fig. 1. Some of the nearest
neighbor displacements

R=X%+Y§y+ 7%, (1)

of the BEDT-TTF* molecules in each of the crystals are
calculated from the X-ray results' and listed in Table
IT. The § structure has the smallest R corresponding to
its two BEDT-TTFT ions in its primitive cell in a par-
allel stacking arrangement. In this case the molecular
planes are separated by 3.47 A along the Z axis while
the molecular centers are shifted by 3.14 A (approxi-
mately one pentagonal ring) along the X axis. The next
nearest neighbor stacking is primarily along the vertical
Y axis due to the lattice translation a. By virtue of the
fact that there is a single BEDT-TTF per primitive unit
cell for the € and ( structures, the molecular ions stack
in parallel planes. In the e structure, a nearest neighbor
stacking similar to that of the § structure is achieved with
the translation vector along its ¢ axis with a separation of
3.48 A along the Z axis and a shift of the molecular cen-
ters of 4.79 A along the X axis. For the ( structure, the
nearest neighbor stacking is achieved by the translation
vector along its a axis, causing a vertical displacement
along the Y axis by 5.46 A with a plane separation of
2.44 A along the Z axis and a smaller shift along the
X axis. In addition, the translation vector along its b
axis, listed as the second entry in the table, also may
contribute significant intermolecular interactions.

Some of the molecular bond lengths for the three crys-
tals are listed in Table ITI, comparing values derived from
X-ray measurements with those derived from the calcu-
lations presented in this paper. Interestingly, the table
shows remarkable agreement, within £0.03 A in the
C—C and C-S bond lengths for the three structures and
for experimental and calculated values. One notable ex-
ception is the measured value of the C7—C8 bond length
for the € structure which, perhaps due to noise, was
reported to be unphysically small for an expected sin-
gle bond carbon group. The unrestricted Hartree-Fock



TABLE III: Some bond lengths (in units of A) for (BEDT-
TTF)-PFs crystals, comparing experimental (“EXP”) with
calculated values both using local density approximation
(“LDA”) on the crystals and unrestricted Hartree-Fock
(“UHF”) on the BEDT-TTFT molecular ion, as described
below. For the lower symmetry d and ¢ structures, the entry
represents an average over similar bond lengths.

[ € ¢

Bond || EXP?| LDA|| EXP*| LDA| UHF|| EXP¢| LDA| UHF
C1-C2 1.38 1.39 1.40 1.37| 1.39 1.38 1.39| 1.39
C3-C4 1.35 1.37 1.35 1.37| 1.34 1.36 1.37| 1.34
C7-C8 1.50 1.51 1.32 1.52 | 1.54 1.51 1.50 | 1.52
C2-52 1.72 1.74 1.71 1.74| 1.73 1.73 1.74 | 1.72
C4-S2 1.72 1.74 1.74 1.75| 1.74 1.74 1.75| 1.75
C4-56 1.74 1.74 1.73 1.73| 1.75 1.75 1.75| 1.76
C8-S6 1.81 1.82 1.77 1.82| 1.83 1.81 1.82| 1.82

Ref. 1

bRef. 2
‘Ref. 3

(UHF) results for the BEDT-TTF* molecular ions re-
ported here are consistent with the earlier work of Demi-
ralp and Goddard.® Figure 2 shows an edge view of the
UHF optimized molecular structures showing the sym-
metry difference between the € and ¢ forms and showing
the high degree of planarity of the ionic forms.

FIG. 2: Edge view of neutral and ionic molecular structures
for the BEDT-TTF molecules, calculated as discussed in Sec-
tion V.

As a part of the optimization calculations, we can esti-
mate the stability of the 3 crystalline forms. The pwpaw
calculations for the three crystals described in Section
ITT suggest that the order of stability is ( > & > €, with
larger error bars on the ¢ structure results. The quantum
chemical studies described in Section V suggest that the
lower symmetry ¢ form is more stable than the e form

for the BEDT-TTF* molecular ions themselves, which
should contribute to the stability of corresponding crys-
tals.

III. LDA ELECTRONIC STRUCTURES
A. Calculational details

The calculations in this section were done within the
framework of density functional theory and the local
density approximation (LDA)'®19 using the exchange-
correlation functional of Perdew and Wang,2? assuming
all occupied Bloch states to have equal numbers of spin
up and spin down electrons.

The LDA calculations were carried out with a plane-
wave basis representation using the projector augmented
wave formalism of Blochl?! with the pwpaw code.?? The
necessary projector and basis functions were generated
with the atompaw code?® using the parameters listed in
Table IV. With this parameter set the plane wave cut-offs
could be chosen as 10 bohr ! and 12 bohr ! for the wave-
function and density planewave expansions, respectively.
The Brillouin zone integrals were approximated by 1, 6,
and 9 k-point samplings for the d, €, and ( structures, re-
spectively in order to calculate the density of states. The
geometry optimizations, which are less sensitive to the
Brillouin zone sampling, were performed with single k-
point sampling point. The results of these optimization
calculations are listed in Table III.

Three-dimensional graphics (Figs. 1 and 7) were gen-
erated using OpenDX.?*

TABLE IV: Atomic numbers (Z), basis function quantum
numbers (nl), and augmentation radii (r7) used to construct
basis and projector functions.

Atom Z nl basis r2 (bohr)
H 1 1s 0.710
C 6 2s 2p 1.010
F 9 25 2p 1.145
P 15 3s 3p ed 1.710
S 16 3s 3p ed 1.810

B. Densities of states

The partial densities of states N%(E), weighted by the
charge contained in a sphere about the atom a, was cal-
culated using a Gaussian smearing function?%2¢ in the
following form:

2

N“(E) = W

D2 G Wi e (P7Bm1e" ()
nk

Here the factor of 2 comes from assuming double oc-
cupancy for each state denoted with band index n and
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FIG. 3: Partial densities of states for §, ¢, and { forms of
BEDT-TTF-PFg in their experimentally determined crystal
structures, showing contributions from spheres surrounding
S, C, H, P, and F sites. The energy scale is zeroed at the
Fermi level for each material.

wavevector k having band energy E,x. The normal-
ized Brillouin zone weight factors are denoted by Wi.
The coefficient C2, represents the charge contained in
a single sphere enclosing atom a, with radius taken to
be the augmentation radii r¢ listed in Table IV and
averaged over inequivalent atoms of the same atomic
species. The Gaussian smearing parameter was taken
to be 0 =0.12 V.

The partial densities of states for the three crystals are
shown in Fig. 3 within a range of £5 eV of the Fermi
level. The results presented are for the crystals in their
experimentally determined crystal structure. The corre-
sponding densities of states for the geometrically opti-
mized structures were very similar, differing primarily in
the relative locations of states associated with F sites,
2.5 eV or more below the Fermi level.

The states within &~ + 2.5 eV of the Fermi level for
all three materials are all associated with the BEDT-
TTF* molecular ions. Because of the coarse Brillouin
zone sampling, the detailed shapes of the partial density
of states curves are not well-determined, but the general
location of the bands and their widths can be recognized.
From these results, we find the § structure to have a band
gap at the Fermi level, while for the € and ( structures the
Fermi level falls in the middle of a narrow band having a
width of less than 1 eV.

The curves show that partial densities of states for the
states near the Fermi level are dominated by S and C
contributions. Since the charge within the augmentation
spheres was chosen as the weighting factor for the partial
density of states defined in Eq. 2, the S contributions are
over estimated relative to those of C. As we will see in
Section ITID, the S and C contributions are very similar
near the Fermi level.

C. Band dispersions

We have studied the band dispersions of these materi-
als in the directions of the reciprocal lattice vectors which
are referenced to the molecule-centered coordinate sys-
tem defined in Fig. 1 in Table V. For the € structure, we
use the notation G4 and Gp' to distinguish the primi-
tive lattice vectors from the conventional lattice vectors
listed in Table I.

TABLE V: Primitive reciprocal lattice vector magnitudes and
directions expressed in the coordinate system defined in Fig.
1. Length |G;| is given in units of A~'; direction is given in
terms of unit vector components.

Crystal |G| X y Z
4 Ga 0.98 0.11 0.93 0.35
Gg 0.59 0.53 -0.38 0.76
Ge 0.49 0.76 0.02 -0.65
€ G4/ 0.74 0.36 0.79 -0.49
Gpr 0.74 0.36 -0.79 -0.49
Ge 1.10 0.94 0.00 0.35
¢ Ga 1.02 -0.20 0.83 0.52
Gg 0.88 0.76 -0.04 0.65
Ge 0.64 -0.52 -0.48 0.70

The electronic band dispersions of the three materials
are presented in Figs. 4, 5, and 6. The bands are very
flat, generally having dispersions of a few tenths of an
eV. However, the € and ( crystals have a single more
dispersive band that passes through the Fermi level. The
¢ crystal has two slightly dispersive bands near the Fermi
level. In each of these cases, the dispersion is greatest in
the direction of the largest reciprocal lattice vector as
listed in Table V.

D. Electronic states near the Fermi level

Since the states near the Fermi level are well isolated
from the other states of the system and are largely re-
sponsible for the interesting electronic and structural
properties of these materials we have examined them in
greater detail.
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FIG. 4: Band structure of § BEDT-TTF-PFg plotted along
the primitive reciprocal lattice vectors.
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FIG. 5: Band structure of ¢ BEDT-TTF-PFg plotted along
the primitive reciprocal lattice vectors.
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FIG. 6: Band structure of { BEDT-TTF-PFg¢ plotted along
the primitive reciprocal lattice vectors.

1. Charge density distributions

We have constructed electronic charge contour maps
for the electrons associated with the band closest to the
Fermi level for the three materials. These are plotted
in several planes in Fig. 7. The results are shown
for the structurally optimized forms of the three crys-
tals. What is most interesting in this diagram is the fact
that the charge contours are remarkably similar and that
for the three crystals, the TTF portions of the BEDT-
TTF molecules have the most significant contribution,
including m-electron contributions from C double bonds
and also from the associated S atoms. Contributions
from S atoms in the hexagonal rings are less significant.
These charge contours seem to also be consistent with
the HOMO (highest occupied molecular orbital) plot pre-
sented by Demiralp and Goddard® for a neutral BEDT-
TTF molecule.

2. Tight-binding analysis

In order to examine the band dispersions near the
Fermi level in greater detail, we have fit them to a simple
tight binding model form. For the § structure, there are
two molecules per primitive cell which are separated by a
non-primitive lattice translation R and therefore the two



FIG. 7: Contour plot of charge density associated with oc-
cupied states near the Fermi level of BEDT-TTF in the 4,
€, and ( structures. Contours are drawn in 4 planes passing
through C and S atoms. The contour values are multiples of
0.005 electrons/A3.

coupled bands near the Fermi level can be expressed in
the form

Eni (k) = Ull(k) + Ul2 (k)7 (3)

where the diagonal functions are given by

Ui (k) = ZMH(T) cos(k - T), (4)
T

and the off diagonal functions are given by

Una(k) = | Y Miz(T)e™ . (5)

In these expressions, T = n,a + nyb + n.c represents a
lattice translation vector. The matrix element Mi;(T)
represents a Hamiltonian matrix element between or-
thogonalized molecular states on equivalent BEDT-TTF
molecules separated by T. The off-diagonal matrix ele-
ment Mi5(T) represents a Hamiltonian matrix element
between orthogonalized molecular states on inequivalent
BEDT-TTF molecules separated by R + T. For the €
and ( structures there is only a single molecule in each
unit cell so that, so that the dispersion of the band (ny)

TABLE VI: Tight binding matrix elements (in units of eV)
for bands near Fermi level of BEDT-TTF-PFg in the §, ¢, and
¢. The constant matrix elements M11(0) have been adjusted
to represent the same zero of energy as in the partial density
of states and band structure plots.

4 € ¢
T Mi11 M2 T Mi1 T Mi11
0 0.11 0 -0.02 0 0.00
a 0.11 c 0.31 a 0.24
0 0.26 a',b’ 0.03 b 0.10
c 0.06 a'+c,b'+c 0.06 a+b 0.00
a 0.02 a'-b’ 0.00 c -0.05
a’-c,b’-c -0.01 a-b -0.02
2c -0.02
can be expressed in the simpler form

Enok = Ull(k)a (6)

where Uyq(k) has the form given in Eq. 4.

The fitting parameters are tabulated in Table VI.
These were fit to the band structure results shown in
Figs. 4, 5, and 6, calculated from the experimental crys-
tal structures. In order to stabilize the fit, it was nec-
essary to use k points at general points in the Brillouin
zone in addition to the special directions plotted in the
band structure diagrams. For each of these fits, the near-
est neighbor contribution has a magnitude that is at least
twice as large as the next leading term. The density of
states curves corresponding to these tight-binding fits are
shown in Fig. 8. These were calculated using the Gilat-
Raubenheimer method,?”-2% and are very sensitive to the
tight binding coefficients M7 (T) and M;3(T). These re-
sults show the band gap of the ¢ crystal to be 0.2 eV and
the band widths of the € and ( crystals to be 0.8 eV.

E. Criticism of LDA results

While the results presented above make a nice story,
they are inconsistent with the experimental measure-
ments reported for the ¢ material.® In particular, the
temperature and dependence of the zero frequency con-
ductivity and optical studies suggest that the material
has an electrical band gap of E, =~ 0.5 or 0.6 ¢V. In ad-
dition, the temperature dependence of the magnetic sus-
ceptibility suggests that there are low energy spin fluctu-
ations. The authors of Ref. 3 suggest that the ( crystal
behaves like a Mott-Hubbard insulator.

While the LDA approach does an excellent job of ap-
proximating the electron response to the lattice and to
the mean-field contributed by all the electrons of the sys-
tem, it under estimates the effects of correlated electron-
electron repulsions. In fact, any single particle treatment
which assumes equal spin occupancy for each spatial state
would predict the € and ( structures to be metallic by
virtue of the fact that they both have an odd number of
electrons in their primitive cells.
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FIG. 8: Density of states for the bands near the Fermi level
of the d, ¢, and { structures.

The next level of approximation beyond LDA is to in-
clude spin, allowing for ferromagnetic or antiferromag-
netic spin configurations. Using a perturbative approach,
we estimated the magnitude of this effect for the local
spin density approximation (LSDA) represented by the
Perdew-Wang functional?? and for the generalized gradi-
ent approximation (PBE)?® and found it to be negligi-
ble. Meanwhile, there is accumulating evidence of sys-
tematic errors in density functional treatments of narrow
band materials. One of the causes of these errors is the
fact that the energy functional includes the Coulomb in-
teraction of each electron with itself which is not effec-
tively canceled by most exchange-correlation functional
forms. This so-called self-interaction error has been ad-
dressed in several references such as 30-32, to name a
few. Efforts are currently underway to correct this error
by constructing new functionals.?® In order to examine
the self-interaction problem and the failure of the LDA
approach more generally, we were motivated to consider
these materials from the point of view of quantum chem-
ical and Hubbard model analyses. For this, we focus on
re-analyzing the states near the Fermi level of the € and
¢ materials.
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FIG. 9: Plot of the Lieb and Wu3! solutions for the infi-
nite one-dimensional Hubbard model for the ground state en-
ergy Fy and first excited state accessible by optical excitation
Eo + Eg4, scaled by the hopping matrix element ¢ and plot-
ted versus the scaled Coulomb repulsion parameter U/¢. The
dotted and dashed lines indicate, respectively, the paramag-
netic and ferromagnetic Hartree-Fock approximations to the
ground state.

IV. HUBBARD MODEL ANALYSIS

A. Infinite one-dimensional crystal

In its simplest form, the Hubbard model®® is a two
parameter representation of the basic interactions which
control our many-electron system. Because of its rela-
tive mathematical accessibility and its rich physics, this
model has received enormous attention — more than 7000
papers on the Hubbard model published in the last 30
years.

It is assumed that it is possible to find a basis of orthog-
onal single particle states, ¢, (r)x, spatially localized at
each site of the lattice n and having spin ¢(1,J). In our
case, we expect the spatial form of |, (r)|?> to roughly
correspond to the charge density plots shown in Fig. 7,
for the nt™ BEDT-TTF' molecular ion. The localized
basis is used to construct creation (af ) and annihilation
(ans) operators. The Hubbard Hamiltonian can then be
written

H(t,U)=—t Z Z al a, +U Z aLTamaIwan\L, (7)

no (')

where the parameters ¢ and U represent the electron
hopping and Coulomb repulsion matrix elements, respec-
tively. The sum over n is taken over the sites of the lat-
tice. The sum over n' is restricted to nearest neighbors
of n.

There is one electron available for each ion which is
known as the half-filling case. For simplicity, we focus on



the one-dimensional Hubbard model, which corresponds
to assuming that ¢ represents the nearest neighbor inter-
action and neglecting all other interactions. In terms of
the tight-binding analysis of Section IIID 2, this corre-
sponds to choosing t &~ Mj1(c) and ¢t =~ M1(a) for the €
and ( structures, respectively.

The advantage of mapping our system to the half-filled
one-dimensional nearest neighbor Hubbard model, is that
we can make use of the exact calculations for the system
which describe its non-trivial behavior. In particular,
the insulating behavior of the one-dimensional Hubbard
system at half-filling was established by the analysis of
the exact ground state of the system by Lieb and Wu.3*
They found the ground state energy of this system to be
given by the expression

B * Jo(z) Ji(z) dx
Ey = —4t/0 m, (8)

where J,(z) are Bessel functions of integer order, as plot-
ted in Fig. 9 as a function of the scaled interaction pa-
rameter U/t. Also shown on this plot are the Hartree-
Fock approximations to the ground state. These were
analyzed by Johansson and Berggren®® who showed that
for the Hartree-Fock ground state takes the forms

4 1
EYf = ——t4+-U
0 T + 4

for the paramagnetic and ferromagnetic spin configura-
tions, respectively. For values of U/t > 16/, the ferro-
magnetic Hartree-Fock solution is more stable than the
paramagnetic Hartree-Fock solution, but neither is close
to the exact ground state for large values of U/t.

In addition to analyzing the ground state of this sys-
tem, Lieb and Wu®* showed that the band gap could be
defined in terms of the difference between the energy to
add an electron minus the energy to remove an electron:

B B * Ji(z) dzx
2 oo 2 _
_ 16t Vz? —1dx (1)

U Ji sinh(2ntz/U)

The second form of the integral was derived by
Ovchinnikov.?” These analytic expressions show that
E, > 0 for all U/t > 0. In this sense, the half-filled
one-dimensional Hubbard model represents an insulator
for all U/t > 0. The magnitude of the band gap is plot-
ted in Fig. 9 relative to the exact ground state energy
E,.

This many-body definition of E, is substantially dif-
ferent from that expected from a single particle point
of view. In fact, the many-body density of states would
show a continuum of states above the ground state acces-
sible by magnetic fluctuation.3”=3° More recently, the re-
sponse of the half-filled one-dimensional Hubbard system

FIG. 10: Plot of the 2-electron eigenstates of the Hubbard
dimer. Singlet eigenstates are indicated with bold lines.
Triplet eigenstates which coincide with the triplet Hartree-
Fock states are indicated with a dashed line, while the singlet
Hartree-Fock ground state is indicated with a dotted line.
The energies are scaled by the hopping parameter ¢t and plot-
ted versus the scaled Coulomb repulsion parameter U/t. The
parameters AF and AP are explained in the text.

to a static and time-dependent electric field has been ex-
amined in terms of a current operator.#%~*? In this work,
it has been numerically established that the Mott energy
gap E, also corresponds to the threshold for optical ex-
citations and that the static conductivity of this system
also vanishes for the same form of the current operator.

For (-BEDT-TTF-PF¢ a band gap of E;, ~ 0.5 or
0.6 eV was inferred® from the temperature dependence of
the static conductivity and the threshold for optical elec-
tric transitions. This seems to be qualitatively consistent
with these results for the half-filled one-dimensional Hub-
bard model.

B. Dimer

In order to examine the Hubbard system in more de-
tail, we consider a dimer system consisting of two sites
and two electrons. The Hubbard model for this case can
be solved exactly as detailed in the Appendix. The Hub-
bard model eigenvalues are graphed in Fig. 10 with the
ground state having the singlet spin configuration and
the energy is given by

'EP = %U - %\/W + 16t2. (12)



The corresponding eigenvector is given by

1qyqD 1 T
¥y = 7\/2+—x2(|1) +(2) +23)), (13)
where
2= 2(U/Jt) = 21% (v/e+ VTP +16). (1)

The basis states |1) and |2) correspond to 2 electrons on a
site (“ionic” contributions) and state |3) corresponds to a
valence-bond contribution*® as defined in the Appendix.
In comparison, the corresponding dimer Hartree-Fock
solutions have triplet states which are identical to those
of the exact solutions, 3EY = S3EPHF = 0 while the
lowest dimer Hartree-Fock singlet state has the energy

1
LEPHE — 9t 4 50, (15)

with the corresponding trial wavefunction having the
same form as Eq. (13) with z(U/t = 0) = V2. For
comparison, the Hartree-Fock energy is included in the
energy diagram of Fig. (10). Here it is evident that
for this dimer model, the singlet Hartree-Fock solution
has lower energy for values of U/t < 4, while the triplet
Hartree-Fock solution has lower energy for U/t > 4. Ex-
cept for U/t << 4, the exact ground state energy of the
model is substantially lower than either Hartree-Fock ap-
proximate.

The basic physics shown here is reminiscent of the
valence-bond versus molecular-orbital descriptions of the
electronic structure of a Ho molecule.** In describing the
single ground state of the Hubbard dimer, the relative
weights of the “ionic” contributions to the wavefunction
represented by states |1) and |2) (Eq. A.1 and A.2) and
the “valence bond” contribution represented by state |3)
Eq. A.3) are sensitive functions of U/t through the func-
tion z(U/t). From the form of the dimer eigenstate of
Eq. (13), we can define the weight of the valence bond
contributions to be

2

x
Wyb = Q_i_—mQa (16)
and the weight of the ionic contributions to be
2
on = ——— - 1
Wion = 972 (17)

These are plotted versus U/t in Fig. 11 where we also
show the corresponding quantities for the Hartree-Fock
approximation. For the exact dimer wavefunction, wyp >
Wion for all U/t > 0, while the Hartree-Fock wavefunction
has wyh, = wien = 1/2 throughout all values of U/t.
Another approximate analysis of the one-dimensional
Hubbard model is the spin density wave (SDW) ap-
proach which forces an antiferromagnetic symmetry on
the ground state wavefunction.?® We can examine this
approach for the two-electron dimer system. The details
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FIG. 11: Plot of the weight factors w indicating the valence-
bond (bold line) and ionic (thin line) contributions to the ex-
act ground state wavefunction of the Hubbard dimer plotted
as a function the of scaled Coulomb repulsion parameter U/t.
The valence-bond and ionic contributions for of the Hartree-
Fock approximation are identical and are indicated with the
dotted line.

are given in the Appendix. The results for the ground
state energy are an improvement over the Hartree-Fock
results:
- 1 <
ESDW _ Zf;— 2U for U/t <2 (18)
-2 for U/t > 2

Here we see that for U/t < 2 the Hartree-Fock solution
has the lowest energy, however for U/t > 2, the SDW
solution has lower energy than the Hartree-Fock result.
However, it also turns out that for U/t > 2, the SDW
solution includes contamination from triplet states with
the weight wiriples = 5 — &, while the valence-bond and
ionic weights are wyp, = % and Wion = %, respectively.
The triplet contributions to the SDW states have the
same spatial form as the valence-bond states, but have
the wrong total spin.

In passing, we note that the valence-bond contribution
strength wyp, is a useful parameter which characterizes
the exact solution of the Hubbard dimer Hamiltonian.
We can use it together with the orthogonal basis func-
tions ¢4 (r) and ¢2(r), localized on sites 1 and 2, respec-
tively, to describe the spatial form of the electron density
corresponding to the exact dimer wavefunction (Eq. 13):

Wb (1 — wyb)p12(T),
(19)

) = 5 (pra () + paa(e)) + 2

1

pis(0) = 5 (6i0)65 (1) + 6 @5 () . (20)

In this expression we see that wy, appears only as the
product wyh(1 — wyb) = WybWion- This form points



out a numerical problem for the density functional!®1?
treatment of this system. Density functional theory re-
lies on the fact that the ground state of the system is a
unique functional of the density. However, we see that
for this system, the spatial form of the density is very
weakly dependent on the parameter wy;, and can take
the same value if wy, > Wion OF Wy, < Wion for constant
WionWyb. Thus, the notion of valence-bond character is
virtually missing from the usual density functional treat-
ment. Lépez-Sandoval and Pastor?®46 have recently de-
veloped a lattice density functional theory in which ma-
trix elements of the one-particle density matrix, including
both diagonal and off-diagonal terms, are treated varia-
tionally, which looks like a promising alternative.

V. QUANTUM CHEMICAL TREATMENT

In order to analyze this system from a different point of
view, we carried out a series of calculations for monomer
and dimer configurations using quantum chemical tech-
niques.

A. Calculational details

Calculations were performed using both the
CRYSTAL98*" and Gaussian03*® codes and using
Gaussian orbital basis sets from Pacific Northwest Lab-
oratory website.?® After verifying that identical results
could be obtained using the two codes, we focused on
using the Gaussian03 code. Unless otherwise stated,
the results were obtained using the 6-31G** basis set*?
and using the unrestricted spin mode. We first used
the unrestricted Hartree-Fock method to optimize the
atomic positions for the monomer ions BEDT-TTF+
using the appropriate point group symmetry (Cop for
the € structure and C; for the ¢ structure. The resulting
C—C and C-S bond lengths are summarized in Table
ITT and agree well with the earlier work of Demiralp and
Goddard® and with the LDA results discussed above.
The optimized structures for the neutral and charged
dimers where visualized using Molden®® and are shown
in Fig 2.

We made use of several of the implementations avail-
able in the Gaussian03 code in order to broaden the
comparison. In addition to Hartree-Fock (HF) calcu-
lations, we also use the Gaussian03 implementations of
density functional calculations using various exchange-
correlation functionals including the local spin density
approximation (LSDA),! a generalized gradient approx-
imation (PBE),%? and a hybrid functional (B3LYP).53-57

B. Dimer calculations

In order to make a connection with the BEDT-
TTF-PFg¢ crystals, and with Hubbard model dimer anal-
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ysis, we consider dimers of BEDT-TTF in their nearest
neighbor configurations of the crystals. This is similar
to approach taken by Fortunelli and Painelli'?>~'* in their
analysis of other BEDT-TTF materials. The relevant
dimers, (BEDT-TTF);? are not stable by themselves due
to their mutual Coulomb repulsion, however we expect
that comparisons of energy differences between singlet
and triplet configurations in a given geometric configura-
tion will be meaningful. Calculations on neutral dimers
of (BEDT-TTF-PFg), gave qualitatively similar results.

TABLE VII: Summary of results for dimers of (BEDT-
TTF)F? obtained using the Gaussian03 code®® in the unre-
stricted spin mode. The labels “NN” and “NNN” indicate
the nearest-neighbor and next-nearest-neighbor geometries,
respectively, as listed in Table II. Calculated single particle
energies AF and MP2 energies AP are listed in units of eV.

Dimer Single particle
geometry method AF AP
¢ (NN) LSDA -0.09
PBE -0.05
B3LYP 0.24
HF 1.85 -0.70
¢ (NNN) HF 2.06 -0.67
e (NN) HF 1.73 -0.65

The results for the dimer calculations, all run with the
unrestricted spin mode, with total spin S =0 or S =1
are summarized in Table VII. The single particle energy
differences are reported in terms of AF = 1EPK — 3EPK
(where K = HF, LSDA, PBE, or B3LYP). The density
functional results in the LSDA and PBE approximations
show a very small spin splitting as is consistent with
our pwpaw results presented in Section IIT above, with
the singlet energy calculated to be more stable than the
triplet. The hybrid functional “B3LYP” results also show
a relatively small spin splitting, but in this case the triplet
configuration is found to be more stable than the singlet.

The Hartree-Fock results all show !EPHF > 3EDHE
by roughly 2 eV. If we refer to Fig. 10 and imagine that
these Hartree-Fock results can be analyzed in terms of
the Hubbard dimer model, we would conclude that the
Hubbard parameters must be such that U/t > 4, such as
indicated by the arrow and AF in the diagram. Unlike
the density functional calculations which underestimate
the spin interactions due to the contamination of electron
self-interaction, the failure of the Hartree-Fock approach
is due to the overestimation of the ionic versus valence-
bond configurations in the wavefunctions as shown in Fig.
11.

In order to estimate the next level of approxima-
tion beyond Hartree-Fock theory, we used a MP2 cor-
rection, which is a second order perturbation the-
ory expansion of the spin unrestricted Hartree-Fock
ground state developed by Mgller and Plesset®® and
others®®% and available in the Gaussian03 code. The
results are also presented in Table VII in terms of
AP = 'EPMP2 _ 3EDMP2 " These results show that



LEPMP2 o 3 EDMP2 o that the corrected energies now
have a ordering which is consistent with the exact Hub-
bard dimer energies as indicated by the arrow and AP
in Fig. 10. While it is difficult to check these results
with larger basis sets, we have verified that the results

are stable for smaller basis sets.

VI. CONCLUSIONS
A. Estimation of the Hubbard model parameters

The Hubbard model for the infinite chain offers a qual-
itative explanation of the experimental results and the
Hubbard dimer model offers a plausible analysis of the
failures of the density functional and Hartree-Fock calcu-
lations. We now address the question of whether or not
the Hubbard model is accurate enough to be quantitative.
From the point of view of matching the experimental es-
timate of the band gap E, to the model, we can make
the following estimate for the hopping parameter ¢ and
the Coulomb repulsion parameter U. We suppose that
t =~ 0.24 eV as determined in the tight binding fit quoted
in Table VI and take the experimental band gap to be
E; =~ 0.5 — 0.6 eV. This means that E,/t =~ 2.0 — 2.5.
From the numerical value of E,/t, we can then infer the
U/t = 5—6 and that U ~ 1.2 — 1.4 eV, which is a rea-
sonable result.

From the comparison of the Hubbard dimer with quan-
tum chemical results of the corresponding system, we
can estimate the parameters in a different way. We
suppose that the MP2 results correspond to the ex-
act dimer ground state expressed in Eq. (12), setting
AP = EP — 3EP = 'EP. We also suppose that the
Hartree-Fock energies correspond with Eq. ((15), setting
AF = 'EPHF _ 3EDHF — 1pDHE  We now can solve
for t and U, finding t & 1 eV and U = 8 €V for all of the
cases considered. This estimate for ¢ is clearly too large,
indicating that the analysis, while qualitatively correct
is not quantitatively correct. Thus, while the MP2 re-
sults are able to correctly predict that the ground state
is a singlet state for this system, it is not close enough
to the exact result to give quantitative estimates of the
Hubbard parameters. Since the MP2 corrections to the
Hartree-Fock energies are approximately 190 eV, it is not
perhaps surprising that further corrections are needed.

B. Outlook

This work has given us some insight into the physics of
some of the simplest examples of organic charge-transfer
crystals having the stoichiometry of BEDT-TTF-PFg.
We have determined that the ¢ structure is energeti-
cally favored over the e form, largely due to the greater
stability of the corresponding lower symmetry molecular
form. The ground state properties of these materials, in-
cluding their bond lengths, the single particle density of
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states, the charge density associated with states near the
Fermi level are well represented by are LDA and quantum
chemical models. In order to understand the conductiv-
ity, optical, and magnetic properties of these materials,
however, many body effects must be included. For exam-
ple, the band gap deduced from the experimental mea-
surements on (-BEDT-TTF-PFg from the temperature
dependence of the direct current conductivity and the
optical band gap® are consistent with the Mott-Hubbard
band gap calculated for the half-filled one-dimensional
Hubbard model using reasonable values for the ¢ and U
parameters.

The analysis of this system has also offered insight into
the challenges of numerical treatment of many-electron
interactions in narrow band materials more generally. In
these systems, spin fluctuations are important. How-
ever, within density functional theory, we find that the
LSDA and PBE exchange-correlation results systemati-
cally underestimate the spin fluctuations perhaps due to
the contamination by the electron self-interaction. In a
Hartree-Fock treatment, the self-interaction problem is
removed, however by definition, correlation effects are
also not treated. We analyzed the problem in more de-
tail using a Hubbard dimer model, finding that an impor-
tant component of this analysis is the inclusion of more
valence-bond than ionic character in the ground state
wavefunction. The Hartree-Fock treatment includes too
much ionic character which destabilizes the result. A
SDW treatment reduces the ionic character, but also con-
taminates the wavefunction with terms having the incor-
rect total spin. We have also shown that the one-electron
density and therefore the density functional approach in
its usual form is nearly blind to the valence-bond content
of the wavefunction.

We have shown that the inclusion of correlation effects
to correct the Hartree-Fock treatment, even at the mini-
mal level of MP2 theory, produced qualitatively accurate
results for the dimer configurations. Clearly, inclusion of
higher levels of correlation are necessary for quantitative
analysis of the dimer as well as the crystalline systems.
There have been a number of powerful methods devel-
oped to treat highly correlated electron systems, such
as the density-matrix renormalization-group (DMRG)
method®!, the dynamical mean field theory (DMFT)
approach®?, and quantum Monte Carlo methods.® While
the DMRG and DMFT methods have largely focused on
solving model Hamiltonian systems, LDA+U methods3?
and LDA+DMFT methods®? are being developed in or-
der to augment density functional treatments with cor-
relation effects. From our analysis in the current work,
we would anticipate that the LDA+U approach, which
adds a Hubbard-like Coulomb term into the effective
Hamiltonian and evaluates it in a mean-field approxi-
mation, would not be suitable for the BEDT-TTF-PFg
system. From our unrestricted Hartree-Fock calculations
on the (BEDT-TTFT), dimers, we find the energy of
the singlet spin configuration to be significantly higher
in energy than that of the triplet spin state, suggesting



that the mean-field treatment of this system with the
LDA+U method would also give incorrect results. We
hope that the analysis presented here will inspire the de-
velopment of additional methods for analyzing the inter-
esting physics of narrow band materials.

Appendix:

Here we give the details of the exact eigenstates of
the Hubbard model (7) for a 2 site and 2 electron dimer
system. This analysis has appeared in the literature.64-6°
There are 6 eigenstates of the Hubbard dimer. Three if
them have triplet spin states and have eigenenergies of 0.
The other three states are single spin states which can be
represented by the following two electron basis functions:

1) = |al,al, |0), (A.1)
12) = |al,al, |0) (A.2)

_ Yt bt
13) = B} (|a1Ta2¢|0) - |a1¢a2¢|0)) . (A.3)

Here, the ket vector |0) represents the vacuum state. In
this basis, the Hamiltonian (7) takes the form:

U 0 —V2t
H= 0 U -2t (A.4)
V2t =2t 0
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We also give some of the details of the SDW solution
of the 2site and 2 electron Hubbard dimer, following the
approach of Johansson and Berggren.3® The ground state
wave is assumed to take the form:

\IJSDW = a0a1|0), (A5)
where
=L (ostotal. +al 6 (al —al A6
o = — (cos o(ayy +ay,) +sinbo(a;; —ay;)) (A.6)
and

1 .
o) = — (cos 191((1J{T - a;T) + sin 6?1((1J{¢ + aa)) .

V2
(A7)

The parameters 6y and 6; are determined variationally
by minimizing the expectation value of the Hamiltonian.
We find that for U/t < 2, the Hartree-Fock solution cor-
responding to 8y = 0 and 6; = 7/2 has the lowest energy,
while for U/t > 2, cos(26g) = 2t/U and 6, = /2 — 6.
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