PHY 711 - Contour Integration

These notes summarize some basic properties of complex functions and their integrals. An analytic function $f(z)$ in a certain region of the complex plane z is one which takes a single (non-infinite) value and is differentiable within that region. Cauchy's theorm states that a closed contour integral of the function within that region has the value

$$
\begin{equation*}
\oint_{C} f(z)=0 . \tag{1}
\end{equation*}
$$

As an example, functions composed of integer powers of $z-$

$$
\begin{equation*}
f(z)=z^{n}, \quad \text { for } \quad n=0,1, \pm 2, \pm 3 \ldots \tag{2}
\end{equation*}
$$

fall in this catogory. Notice that non-integral powers are generally not analytic and that $n=-1$ is also special. In fact, we can show that

$$
\begin{equation*}
\oint_{C} \frac{d z}{z}=2 \pi i . \tag{3}
\end{equation*}
$$

This result follows from the fact that we can deform the contour to a unit circle about the origin so that $z=\mathrm{e}^{i \theta}$. Then

$$
\begin{equation*}
\oint_{C} \frac{d z}{z}=\int_{0}^{2 \pi} \frac{\mathrm{e}^{i \theta}}{\mathrm{e}^{i \theta}} i d \theta=2 \pi i . \tag{4}
\end{equation*}
$$

One result of this analysis is the Cauchy integral formula which states that for any analytic function $f(z)$ within a region C,

$$
\begin{equation*}
f(z)=\frac{1}{2 \pi i} \oint_{C} \frac{f\left(z^{\prime}\right)}{z^{\prime}-z} d z^{\prime} \tag{5}
\end{equation*}
$$

Another result of this analysis is the Residue Theorm which states that if the complex function $g(z)$ has poles at a finite number of points z_{p} within a region C but is otherwise analytic, the contour integral can be avaluated according to

$$
\begin{equation*}
\oint_{C} g(z) d z=2 \pi i \sum_{p} \operatorname{Res}\left(g_{p}\right), \tag{6}
\end{equation*}
$$

where the residue is given by

$$
\begin{equation*}
\operatorname{Res}\left(g_{p}\right) \equiv \lim _{z \rightarrow z_{p}}\left\{\frac{1}{(m-1)!} \frac{d^{m-1}}{d z^{m-1}}\left(\left(z-z_{p}\right)^{m} g(z)\right)\right\} \tag{7}
\end{equation*}
$$

where m denotes the order of the pole.

