## PHY 711 - Assignment \#7

Note: This problem is similar to one posed in the Classical Mechanics text by Goldstein.

9/13/2013

Continue reading Chapter 3 in Fetter and Walecka.

1. Consider a Lagrangian function which depends on $\ddot{q}(t)$ in addition to $q(t), \dot{q}(t)$ and $t ; L=$ $L(q, \dot{q}, \ddot{q} ; t)$.
(a) Show that the Euler-Lagrange equation for this Lagrangian is:

$$
\frac{d^{2}}{d t^{2}}\left(\frac{\partial L}{\partial \ddot{q}}\right)-\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}}\right)+\frac{\partial L}{\partial q}=0
$$

(b) Consider the specific Lagrangian given below and find the corresponding equations of motion.

$$
L(q, \dot{q}, \ddot{q} ; t)=-\frac{m}{2} q \ddot{q}-\frac{k}{2} q^{2} .
$$

