PHY 711 - Problem Set \# 17

Finish reading Chapter 5 in Fetter and Walecka.

In most Classsical Mechanics texts (besides Fetter and Walecka), the Euler angles are defined with a different convention as shown below. (This figure was slightly modified from one available on the website http://en.wikipedia.org/wiki/Euler_angles.)

In this case, the first rotation is about the original $\hat{\mathbf{z}}$ axis by ϕ corresponding to the rotation matrix

$$
\mathcal{R}_{\phi}=\left(\begin{array}{ccc}
\cos \phi & \sin \phi & 0 \tag{1}\\
-\sin \phi & \cos \phi & 0 \\
0 & 0 & 1
\end{array}\right) .
$$

The second rotation is about the new $\hat{\mathbf{x}}$ axis by θ corresponding to the rotation matrix

$$
\mathcal{R}_{\theta}=\left(\begin{array}{ccc}
1 & 0 & 0 \tag{2}\\
0 & \cos \theta & \sin \theta \\
0 & -\sin \theta & \cos \theta
\end{array}\right) .
$$

In this case, the last rotation is about the new $\hat{\mathbf{z}}$ axis by ψ corresponding to the rotation matrix

$$
\mathcal{R}_{\psi}=\left(\begin{array}{ccc}
\cos \psi & \sin \psi & 0 \tag{3}\\
-\sin \psi & \cos \psi & 0 \\
0 & 0 & 1
\end{array}\right) .
$$

For this convention, write a general expression for the angular velocity vector ω in terms of the time rate of change of these Euler angles - $\dot{\phi}, \dot{\theta}$, and $\dot{\psi}$ corresponding to the 29.7 of your text.

