PHY 741 - Problem Set \#1

Read Chapter 1 in Mahan; homework is due Monday, August 30, 2010.
For a system described by the probability amplitude $\psi(x)$, we can define the square modulus of the variance of a Hermitian operator \mathcal{A} as

$$
|\Delta \mathcal{A}|^{2} \equiv\langle\psi| \mathcal{A}^{2}|\psi\rangle-(\langle\psi| \mathcal{A}|\psi\rangle)^{2} .
$$

In class we showed that for the 3 Hermitian operators \mathcal{A}, \mathcal{B}, and \mathcal{C} with the commutation relations

$$
[\mathcal{A}, \mathcal{B}]=i \mathcal{C},
$$

the variances satisfy the inequality

$$
\begin{equation*}
\Delta \mathcal{A} \Delta \mathcal{B} \geq \frac{1}{2}\langle\psi| \mathcal{C}|\psi\rangle \tag{1}
\end{equation*}
$$

For this Homework, choose

$$
\mathcal{A}=x, \quad \text { and } \quad \mathcal{B}=p \equiv-i \hbar \frac{\partial}{\partial x} .
$$

1. What is the operator \mathcal{C} for this case?
2. For each of the following probability amplitudes, evaluate the left and right hand sides of Eq. (1) and check the validity of the inequality.
(a)

$$
\psi(x)=\frac{1}{\sqrt{a \sqrt{2 \pi}}} \mathrm{e}^{i k_{0} x-x^{2} /\left(4 a^{2}\right)}
$$

In this expression a is a length parameter and k_{0} is a positive parameter with the dimensions of $1 /$ length.
(b)

$$
\psi(x)= \begin{cases}\sqrt{\frac{630}{a^{9}}} x^{2}(a-x)^{2} & \text { for } 0 \leq x \leq a \\ 0 & \text { otherwise }\end{cases}
$$

In this expression a is another length parameter.

