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TOTALLY ACYCLIC APPROXIMATIONS

PETTER A. BERGH, DAVID A. JORGENSEN, AND W. FRANK MOORE

Abstract. Let R be a commutative local ring. We study the subcategory
of the homotopy category of R-complexes consisting of the totally acyclic R-
complexes. In particular, in the context where Q → R is a surjective local ring
homomorphism such that R has finite projective dimension over Q, we define
an adjoint pair of functors between the homotopy category of totally acyclic
R-complexes and that of Q-complexes, which are analogous to the classical
adjoint pair between the module categories of R and Q. We give detailed
proofs of the adjunction in terms of the unit and counit. As a consequence,
one obtains a precise notion of approximations of totally acyclic R-complexes
by totally acyclic Q-complexes.

Introduction

This paper was motivated by the desire to approximate in a meaningful way to-
tally acyclic complexes over a commutative local ring R by simpler totally acyclic
complexes, possibly even periodic ones. The subcategory Ktac(R) of the homotopy
category of R-complexes consisting of totally acyclic R-complexes is a thick subcat-
egory, and therefore is also a triangulated category. To facilitate an approximation,
we assume that there exists a surjective local ring homomorphism ϕ : Q → R such
that Q is Gorenstein and R has finite projective dimension as a Q-module. Our
approximation is then achieved through an adjoint pair of triangle functors

Ktac(Q)
Sϕ //

Ktac(R)
Tϕ

oo

which are consonant with the classical adjoint pair of functors between the module
categories of Q and R. Indeed, as is the case in the classical setting, Sϕ is simply
the base change functor. However, as nontrivial totally acyclic R-complexes are
never totally acyclic Q-complexes when R 6= Q, obtaining the right adjoint Tϕ
requires a modification of the forgetful functor. Its construction is given in Section
2, and we prove in detail that it is a triangle functor. We remark also that the
condition of pdQR < ∞ is key to the existence of Tϕ. In Section 3 we prove that
Sϕ and Tϕ form an adjoint pair via the unit and counit natural transformations. In
Section 4 we recall the precise notion of approximation, in terms of the counit of the
adjunction. The approximations are especially meaningful in Remark 4.7, where
totally acyclic complexes over a quotient of a hypersurface ring are approximated
by period 2 complexes. Our interest in this project was also motivated by recent
work in [Kr], [Ne] on approximations and adjoints in related categories.
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To put the functors S = Sϕ and T = Tϕ in further perspective, Let Db(R)
denote the bounded derived category of R and Db(Q) that of Q. The classical
adjoint pair of the base change functor and the forgetful functor for the module
categories extend to an adjoint pair of the bounded derived categories. Since the
projective dimension of R over Q is finite, a perfect complex in Db(R) under the
forgetful functor is a perfect complex in Db(Q). Thus the adjoint pair extends to
the verdier quotients of the bounded derived category modulo the corresponding
thick subcategories of perfect complexes, in other words the singularity categories
Db

sg(Q) and Db
sg(R). This explains the right pair of vertical arrows in the diagram

below. The top horizontal arrow is the equivalence of categories proved in [Bu]; the
functor is defined by hard truncation of a totally acyclic complex to the right of
zero. It is proved in [BeJoOp] that the same functor is fully faithfully in general,
which explains the bottom arrow.

Ktac(Q)
OO

T

∼= // Db
sg(Q)
OO

τ

Ktac(R)
��

S

�

� // Db
sg(R)
��

σ

The adjoint pair S and T of this paper is the corresponding adjoint pair making
the square commute.

1. Preliminaries

Let R be a ring. By an R-complex C we mean a sequence of left R-module
homomrphisms

C : · · · → Cn+1

∂C
n+1

−−−→ Cn
∂C
n−−→ Cn−1 → · · ·

graded homologically, where each Cn is a left R-module, and n is its homological
degree. Without prior stipulation, an arbitrary R-module is assumed also to be a
complex concentrated in homological degree 0.

Recall that a semi-free R-complex F is one whose underlying graded R-module
F ♮ has graded basis E which can be written as a disjoint union E =

⊔
n≥0 E

n such

that ∂F (En) ⊆ R〈
⋃n−1
i=1 Ei〉 for every n ≥ 1.

Definition. A semi-free resolution of an R-complex C is a quasi-isomorphism
F → C of complexes where F is a semi-free R-complex.

We now state some important facts, and simply give a reference when the proofs
are available in the literature.

1.1. [ChFoHo, 5.1.7, 5.1.13] Every R-complex C has a semi-free resolution π : F →
C with Fn = 0 for all n < inf{i | Hi(C) 6= 0}. Moreover, π can be chosen to be
surjective. If R is left Noetherian and C is a bounded below complex of finitely
generated R-modules, then π can even be chosen to be surjective with Fn finitely
generated for all n, and Fn = 0 for all n < inf{i | Ci 6= 0}.

The next result is the so-called ‘Comparison Theorem.’

1.2. [ChFoHo, 5.2.9] Let π′ : F ′ → C′ be a quasiisomorphism of R-complexes, and
α : F → C′ a morphism of R-complexes with F semi-free. Then there exists a
morphism of complexes µ : F → F ′ such that π′µ ∼ α. If π′ is surjective, then µ
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can be chosen such that π′µ = α. Moreover, µ is homotopic to any other morphism
of R-complexes µ′ with π′µ′ = α.

From this point on we assume that R is a commutative Noetherian ring.

Definition. Recall from [AvMa] that an R-complex C of finitely generated free
modules is called totally acyclic if

H(C) = 0 = H(HomR(C,R)).

We denote by Ktac(R) the homotopy category of totally acyclic R-complexes; the
objects in Ktac(R) are the totally acyclic R-complexes, and the morphisms are
homotopy equivalence classes of morphisms of R-complexes. For a morphism f :
C → C′ of R-complexes we write [f ] for its homotopy equivalence class. Thus for
two morphisms f, g : C → C′ of R-complexes, one has f ∼ g if and only if [f ] = [g].

The following facts we use often in the rest of the paper. Given an R-complex
C, from now on we write C∗ for the R-complex HomR(C,R).

1.3. Suppose that s is an integer, C,C′ ∈ Ktac(R) and f : C → C′ is a morphism

of complexes. If there exist maps σn : Cn → C′
n+1 satisfying fn = σn−1∂

C
n +∂C

′

n+1σn
for all n > s, then the σn can be extended to a homotopy showing that f ∼ 0.

Proof. By induction it suffices to show there exists a map σs : Cs → C′
s+1 such

that fs+1 = σs∂
C
s+1 + ∂C

′

s+2σs+1.
Note that since C is a totally acyclic complex and C′

s+1 is free, the complex
HomR(C,C

′
s+1) is exact. We have

∂
HomR(C,C′

s+1)

s+1 (fs+1 − ∂C
′

s+2σs+1) =
(
fs+1 − ∂C

′

s+2σs+1

)
∂Cs+2

= fs+1∂
C
s+2 − ∂C

′

s+2

(
fs+2 − ∂C

′

s+3σs+2

)

=
(
fs+1∂

C
s+2 − ∂C

′

s+2fs+2

)
− ∂C

′

s+3∂
C′

s+3σs+2

= 0

Thus fs+1 − ∂C
′

s+2σs+1 ∈ Ker ∂
HomR(C,C′

s+1)

s+1 = Im ∂
HomR(C,C′

s+1)
s . Therefore there

exists a map σs : Cs → C′
s+1 such that ∂

HomR(C,C′

s+1)
s (σs) = fs+1 − ∂C

′

s+2σs+1, in

other words fs+1 = σs∂
C
s+1 + ∂C

′

s+2σs+1. �

1.4. Suppose that s is an integer and C,C′ ∈ Ktac(R). If there exist maps fn :

Cn → C′
n satisfying fn−1∂

C
n = ∂C

′

n fn for all n > s, then the fn can be extended
to a morphism of complexes f : C → C′. Any two such extensions are homotopic,
that is, if g : C → C′ is a morphism of complexes such that there exist maps
σn : Cn → C′

n+1 with fn − gn = σn−1∂
C
n + ∂C

′

n σn for all n ≥ s, then f ∼ g.

Proof. The second statement follows immediately from 1.3. The proof of the first
statement is essentially that of 1.3, and is left to the reader. �

Definition. A complete resolution (see, for example, [AvMa]) of an R-complex C
is a diagram of morphisms of R-complexes

U
ρ
−→ F

π
−→ C

such that U ∈ Ktac(R), F is a semi-free resolution of C, and ρn is bijective for all
n ≫ 0. We will often abuse terminology and call U a complete resolution of C.
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The following is a slightly generalized version of [AvMa, 5.3]. The proof is
essentially the same as that in ibid.

1.5. Complete resolutions are well-defined up to homotopy equivalence. Specifi-

cally, if U
ρ
−→ F

π
−→ C and U ′ ρ′

−→ F ′ π′

−→ C′ are complete resolutions of R-complexes
C and C′, and µ : C → C′ is a morphism of complexes, then by the comparison the-
orem 1.2 there exists a unique-up-to-homotopy morphism µ making the right-hand
square of the diagram

U //

µ̂

��

F

µ

��

// C

µ

��
U ′ // F ′ // C′

commute up to homotopy, and for each choice of µ there exists a unique-up-to-
homotopy morphism µ̂ making the left-hand square commute up to homotopy. If
µ = IdC , then µ and µ̂ are homotopy equivalences.

1.6. Suppose that Q and R are commutative Noetherian rings, and ϕ : Q → R
is a surjective ring homomorphism. Let C be a complex of finitely generated free
Q-modules. Then

HomQ(C,Q)⊗Q R and HomR(C ⊗Q R,R)

are isomorphic as R-complexes.

Proof. By Hom-tensor adjunction for complexes, and after making the canonical
identification of HomR(R,R) with R, we immediately get that HomR(C ⊗Q R,R)
and HomQ(C,R) are isomorphic. Therefore it suffices to prove that HomQ(C,Q)⊗Q
R and HomQ(C,R) are isomorphic.

Define maps αn : HomQ(C−n, Q) ⊗Q R → HomQ(C−n, R) by αn(f ⊗ r)(x) =
ϕ(f(x))r, and βn : HomQ(C−n, R) → HomQ(C−n, Q) ⊗Q R by βn(g) = g′ ⊗Q 1R
where ϕg′ = g. Thus αn(βn(g))(x) = αn(g

′ ⊗ 1R)(x) = ϕ(g′(x)) = g(x), and so
αnβn = IdHomQ(C−n,R). Also, βn(αn(f ⊗ r)) = g′ ⊗ 1R where ϕ(g′(x)) = ϕ(f(x))r,
and so βnαn = IdHomQ(C−n,Q)⊗QR. Finally one just needs to check that αn and βn
commute with the differentials, and this is left to the reader. �

2. The ‘forgetful’ triangle functor

Let Q be a commutative local Gorenstein ring, and ϕ : Q → R a surjective local
ring homomorphism such that pdQR < ∞.

The main objective of this section is to define the ‘forgetful’ functor

T = Tϕ : Ktac(R) → Ktac(Q)

and prove that it is a triangle functor. The definition of T is as follows.

Definition. Let C ∈ Ktac(R). Then TC ∈ Ktac(Q) is a complete resolution of
Im ∂C0 over Q (which is uniquely defined by 1.5.) Given a morphism [f ] : C → C′ in

Ktac(R), we have the map µ : Im ∂C0 → Im ∂C
′

0 induced by the morphism f : C → C′

of R-complexes. Then T [f ] : TC → TC′ is the homotopy equivalence class [µ̂] of the
comparison map µ̂ : TC → TC′ between complete resolutions (which is uniquely
determined by µ, by 1.5.)

Proposition 2.1. T : Ktac(R) → Ktac(Q) is an additive functor.
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Proof. The only verifications of the axioms of additive functor that are possibly not
obvious follow easily from the fact that T is well-defined on morphisms in Ktac(R),
which we now prove. Let [f ] : C → C′ be the zero morphism in Ktac(R). Let

µ : Im ∂C0 → Im ∂C
′

0 be the map induced by f . Then there exists a homotopy

σ ∈ HomR(C,C
′)1 such that ∂C

′

0 (σ−1|Im ∂C
0
) = µ, where ∂C

′

0 : C′
0 → Im ∂C

′

0 is the

map induced by ∂C
′

0 . Let F and F ′ be Q-free resolutions of Im ∂C0 and Im ∂C
′

0 ,
respectively, and K a minimal Q-free resolution of C′

0. Then any chain map µ :
F → F ′ lifting µ is homotopic to a lifting of the composition

· · · // F1

∂F
1 //

��

F0

��

// Im ∂C0

σ−1|Im ∂C
0

��

// 0

· · · // K1

∂K
1 //

��

K0

��

// C′
0

∂C′

0��

// 0

· · · // F ′
1

∂F ′

1 // F ′
0

// Im ∂C
′

0
// 0

which is eventually zero since K is a finite complex. This shows that µ̂ ∼ 0, in
other words, T [f ] = 0. �

Theorem 2.2. T : Ktac(R) → Ktac(Q) is a triangle functor.

Proof. We first show that T commutes with shifts, that is, there is a natural iso-
morphism between TΣ and ΣT . Let M = Im ∂C0 . From Corollary 2.4 below we see
that a minimal free resolution of ΩR1 (M) agrees with that of M beginning at degree
pdQR+ 1. Specifically if F and F ′ are minimal free resolutions of M and ΩR1 (M)

over Q, respectively, then we have Σ−1(F≥c+2) ∼= F ′
≥c+1, for c = pdQR. This

implies that Σ−1(TC) ≃ T (Σ−1C), which is another way of stating the result. It is
clear that this isomorphism respects morphisms in Ktac(R), that is, if [f ] : C → C′

is a morphism in Ktac(R), then the following diagram commutes.

TΣC
TΣ[f ] //

≃

��

TΣC′

≃

��
ΣTC

ΣT [f ] // ΣTC′

Next we show that T takes distinguished triangles to distinguished triangles.
Any distinguished triangle in Ktac(R) is isomorphic as a triangle to one of the form

C
[f ]
−−→ C′ → cone([f ]) → ΣC. We need to complete the diagram

TC
T [f ] // TC′ // T cone([f ]) //

��

Σ(TC)

TC
T [f ] // TC′ // cone(T [f ]) // Σ(TC)

so that the second two squares commute.

Let TC
ρ
−→ F

π
−→ C≥−1 and TC′ ρ′

−→ F ′ π′

−→ C′
≥0 be complete resolutions over

Q, and µ : C≥−1 → C′
≥0 be the map induced by f . Then by 1.5 there exists
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a morphism of Q-complexes µ : F → F ′ such that all squares in the following
diagram commute (we can assume that π′ is surjective.)

F2
//

π2

��

µ2zz

F1
//

π1

��

µ1zz

F0
//

π0

��

µ0zz

F−1

π−1

��

F ′
2

//

π′

2

��

F ′
1

//

π′

1

��

F ′
0

π′

0

��

C2
//

µ2zztt
t
t
t
t

C1
//

µ1zztt
t
t
t
t

C0
//

µ0zztt
t
t
t
t

C−1

C′
2

// C′
1

// C′
0

This diagram gives rise to a commutative diagram of short exact sequences of
morphisms of Q-complexes

0 // F ′ //

π′

��

cone(µ) //

(
π′ 0
0 Σπ

)

��

ΣF //

Σπ

��

0

0 // C′
≥0

// cone(µ) // Σ(C≥−1) // 0

The resulting commutative diagram of long exact sequences of homology shows that
the morphism of Q-complexes cone(µ) → cone(µ) is a quasiisomorphism. Thus

cone(µ) is a semi-free resolution of cone(µ), and therefore also of Im ∂
cone(f)
0 . It

follows that

cone(µ̂) → cone(µ) → Im ∂
cone(f)
0

is a complete resolution of Im ∂
cone(f)
0 , where µ̂ : TC → TC′ is a morphism of

Q-complexes as in 1.5. We now have that the diagram of morphisms

TC
µ̂ // TC′ // T cone(f) // Σ(TC)

TC
µ̂ // TC′ // cone(µ̂) // Σ(TC)

which commutes up to homotopy. The result follows. �

For an arbitrary commutative local ring A, consider a short exact sequence of

finitely generated A-modules 0 → X → Y
π
−→ Z → 0. Let F and G be minimal free

resolutions of Y and Z, respectively. Let cone(φ) denote the mapping cone of the
morphism φ : F → G lifting the surjection π:

cone(φ) : · · · → F1 ⊕G2

(
−∂F

1 0

φ1 ∂G
2

)

−−−−−−−−→ F0 ⊕G1

(φ0 ∂
G
1 )

−−−−−−→ G0.

Lemma 2.3. In the notation of the previous discussion, the truncated mapping
cone

trcone(φ) : · · · → F2 ⊕G3

(
−∂F

2 0

φ2 ∂G
3

)

−−−−−−−−→ F1 ⊕G2

(
−∂F

1 0

φ1 ∂G
2

)

−−−−−−−−→ ker
(
φ0 ∂G1

)

is (after shift) a free resolution of X.



TOTALLY ACYCLIC APPROXIMATIONS 7

Proof. We first note that Since F and G are both minimal free resolutions, the map
φ0 is surjective. Therefore so is the map ( φ0 ∂

G
1 ), and so ker ( φ0 ∂

G
1 ) is free.

From the short exact sequence of complexes 0 → G → cone(φ) → ΣF → 0, we
get the long exact sequence of homology

· · · → H1(G) → H1(cone(φ)) → H0(F )
π
−→ H0(G) → H0(cone(φ)) → 0.

Since ( φ0 ∂
G
1 ) is surjective, H0(cone(φ)) = 0. Thus this long exact sequence of

homology reduces to the short exact sequence

0 → H1(cone(φ)) → Y
π
−→ Z → 0,

and so X ∼= H1(cone(φ)). Since Hi(cone(φ)) = Hi(trcone(φ) for all i ≥ 1, the result
follows, that is Σ−1 trcone(φ) is a free resolution of X . �

Corollary 2.4. Let K be a minimal free resolution of R over Q, F a minimal
resolution of M over Q, and µ = rankF0. Consider the morphism of complexes
φ : Kµ → F lifting the surjection F0 → M . Then Σ−1 trcone(φ) is a free resolution
of ΩR1 (M) over Q. If c = pdQR < ∞ then (Σ−1 trconeφ)≥c+1 = Σ−1(F≥c+2)

3. Adjunction

Keeping the same assumptions on Q and R as in the previous section, the goal of
this section is to compare Ktac(R) with Ktac(Q). This will be done by constructing
an adjoint pair of triangle functors between the two categories.

The descension functor is easy:

S = Sϕ : Ktac(Q) → Ktac(R)

is defined by SC = C⊗QR and S[f ] = [f⊗QR] for C an object and [f ] a morphism
in Ktac(Q). This is a triangle functor due in part to 1.6. Indeed, if C is acyclic
complex of free Q-modules, then C ⊗Q R is an acyclic complex of free R-modules
(since pdQR < ∞), and HomQ(C,Q) being acyclic implies HomQ(C,Q) ⊗Q R
is acyclic. Hence HomR(C ⊗Q R,R) is acyclic by 1.6. It is easy to see that S
takes homotopic morphisms of complexes to homotopic morphisms of complexes,
commutes with shifts and takes distinguished triangles to distinguished triangles.

The ascension functor

T = Tϕ : Ktac(R) → Ktac(Q)

is the functor defined in Section 2.
Our main result for this section is the following.

Theorem 3.1. The triangle functors S and T form an adjoint pair, that is, they
satisfy the following property: for all C ∈ Ktac(R) and D ∈ Ktac(Q) there exist a
bijection

HomKtac(Q)(D,TC) → HomKtac(R)(SD,C)(1)

which is natural in each variable.

Before engaging the proof, we observe that for D ∈ Ktac(Q) one has

TSD ≃ D ⊗Q K

where K is a Q-free resolution of R. Indeed, one has that D≥0 ⊗Q K is a Q-free
resolution of Im ∂SD0

∼= Im ∂D0 ⊗Q R. The assertion is now clear.
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Proof. In order to prove the theorem we define natural transformations

η : IdKtac(Q) → TS

and

ǫ : ST → IdKtac(R)

— the unit and counit, respectively, of the adjunction — as follows. For D ∈
Ktac(Q) define ηD : D → TSD to be the morphism of complexes embedding
Dn into the first component of TSDn =

⊕n
i=0 Dn−i ⊗Q Ki for all n. And for

C ∈ Ktac(R) define ǫC : STC → C to be the morphism induced by the comparison
map F → C≥0, where F is a free resolution of Im ∂C0 over Q. It follows from 1.4
and 1.3 that η and ǫ are natural in their arguments.

We just need to show that

T ǫC ◦ ηTC ∼ IdTC and ǫSD ◦ SηD ∼ IdSD

First we discuss the map T ǫC. We have a morphism of complexes

· · · // TC1

∂TC
1 //

µ̂1

��

TC0

µ̂0

��

// Im ∂TC0

ν

��

// 0

· · · // F1

∂F
1 // F0

// Im ∂C0
// 0

where F is aQ-free resolution of Im ∂C0 . Suppose that kerϕ = (x1, . . . , xr). For each
1 ≤ i ≤ r, let σi : TC0 → F1 be the beginning of homotopies expressing the fact that
the morphisms xiµ̂ are null homotopic, that is, ∂F1 ◦ σi = xiµ̂0 for 1 ≤ i ≤ r. Now
let K be a minimal free resolution of R over Q and define maps u0 : TC0 ⊗QK0 →
F0 by u0(a ⊗ b) = µ̂0(a)b, and u1(a ⊗ (b1, . . . , br)) = σ1(a)b1 + · · · + σc(a)br for
a⊗ (b1, . . . , br) ∈ TC0⊗QK1, u1(a⊗ b) = µ̂1(a)b for a⊗ b ∈ TC1⊗QK0. Then one
checks easily that the following diagram commutes.

TC0 ⊗Q K1

⊕ TC0⊗∂
K
1

))❙❙
❙❙

❙❙
❙❙

❙❙
❙❙

❙❙

TC1 ⊗Q K0

∂TC
1 ⊗K0 //

u1

��

TC0 ⊗Q K0

u0

��

// Im ∂TC0 ⊗Q R //

ν⊗R

��

0

F1

∂F
1 // F0

// Im ∂C0
// 0

This gives rise to a morphism of Q-complexes (TC≥0⊗QK) → F such that un(a⊗
b) = µ̂n(a)b for a⊗ b ∈ TCn ⊗Q K0, the former complex being a Q-free resolution
of Im ∂TC0 ⊗QR, It follows that we may achieve the morphism T ǫC : TSTC → TC
satisfying (T ǫC)n(a⊗ b) = ab for a⊗ b ∈ TCn ⊗Q K0.

We have the natural embedding ηTC : TC → TSTC with ηTC(a) = a ⊗ 1 ∈
TCn ⊗Q K0 for all a ∈ TCn. Thus we have shown that T ǫC ◦ ηTC ∼ IdTC .

The morphism SηD : SD → STSD embeds SDn into the first component of
STSD ≃

⊕c
i=0 SDn−i ⊗Q SKi for all n. And the morphism ǫSD : STSD → SD

takes the first component of STSD ≃
⊕c

i=0 SDn−i ⊗Q SKi to SDn for all n ∈ Z.
Thus we have ǫSD ◦ SηD ∼ IdSD. �
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4. Approximations of totally acyclic complexes

Our main application of Theorem 3.1 is a resulting notion of approximation in
the homotopy category of totally acyclic complexes. We now recall the notion of
approximation we use, due to Auslander and Smalø [AuSm], and independently,
Enochs [En],

Let X be a full subcategory of a category C. Then a right X -approximation of

C ∈ C is a morphism X
ǫ
−→ C, with X ∈ X , such that for all objects Y ∈ X , the

sequence HomC(Y,X)
Hom(Y,ǫ)
−−−−−−→ HomC(Y,C) → 0 is exact.

Dually, one has the concept of left X -approximations. Specifically, a morphism

C
µ
−→ X , with X ∈ X , is called a left X -approximation of C ∈ C if for all objects

Y ∈ X , the sequence HomC(X,Y )
Hom(µ,Y )
−−−−−−→ HomC(C, Y ) → 0 is exact.

The full subcategory X is called functorially finite in C if for every object C ∈ C,
there exists a right X -approximation of C and a left X -approximation of C.

We let SKtac(Q) = {D⊗QR | D ∈ Ktac(Q)}. Our main application of Theorem
3.1 is the following.

Theorem 4.1. SKtac(Q) is functorially finite in Ktac(R).

Proof. That every C ∈ Ktac(R) has a right SKtac(Q)-approximation follows im-
mediately from Theorem 3.1: the morphism [ǫC ] : STC → C is a right approx-
imation in Ktac(R). Indeed, if [f ] : SD → C is any morphism in Ktac(R) with
D ∈ Ktac(Q), then from the natural transformation ǫ : ST → IdKtac(R) we have
equality [ǫC ] ◦ ST [f ] = [f ] ◦ [ǫSD]. Composing on the right with S[ηD] we obtain
[ǫC ] ◦ ST [f ] ◦ S[ηD] = [f ], and thus ST [f ] ◦ S[ηD] : SD → STC is the morphism
we seek.

Now we show that every C ∈ Ktac(R) has a left approximation. This can be
done by simply dualizing a right approximation. For this we will use several times
that for any given D ∈ Ktac(Q), one has the natural isomorphism of complexes
HomR(D⊗QR,R) ∼= HomQ(D,Q)⊗QR from 1.6. We have the right approximation
[ǫC∗ ] : STC∗ → C∗ of C∗. The claim is that [ǫ∗C∗ ] : C ∼= C∗∗ → (STC∗)∗ is
a left approximation of C. Note that the target of ǫ∗C∗ is in SKtac(Q) by the
aforementioned isomorphism of 1.6. Now let E ∈ Ktac(Q) and f : C → SE be
a morphism in Ktac(R). Then we have the morphism f∗ : (SE)∗ → C∗, with
(SE)∗ in SKtac(Q). Therefore we have that f∗ ∼ ǫC∗g for some morphism g :
(SE)∗ → STC∗. Dualizing back we have that f ∼ g∗ǫ∗C∗ , which is what we needed
to show. �

Motivated by results along the lines of [Ne, Proposition 1.4], we ask the following:

Question 4.2. Is SKtac(Q) a thick subcategory of Ktac(R)?

We illustrate Theorem 4.1 with an example.

Example 4.3. Let R = k[x, y]/(x2, y2), and C be the totally acyclic R-complex
with Im ∂C0 = Rxy ∼= k:

C : · · · → R3

(
x 0 −y
0 y x

)

−−−−−−−→ R2 (x y )
−−−−→ R

(xy )
−−−→ R

( xy )
−−−→ R2 → · · ·

Then a free resolution of Im ∂C0 over Q = k[x, y]/(x2) is given by

F : · · · → Q2

(
x −y
0 x

)

−−−−−→ Q2 ( x y0 x )−−−−→ Q2

(
x −y
0 x

)

−−−−−→ Q2 ( x y )
−−−−→ Q → 0
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The right approximation ǫC : STC → C takes the form

· · · // R2

(
x −y
0 x

)

//

(
1 0
0 0
0 1

)

��

R2

IdR2

��

( x y0 x ) // R2

( 1 0 )

��

(
x −y
0 x

)

// R2

( y 0 )

��

(x y0 x ) // R2 //

(
y 0
0 0

)

��

· · ·

· · · // R3
(
x 0 −y
0 y x

)// R2

(x y )
// R

(xy )
// R

( xy )
// R2 // · · ·

Since C is self-dual in this example, that is C ∼= Σ−1(C∗), the left approximation
[ǫ∗C ] : C → (STC)∗ takes the form

· · · // R3

(
x 0 −y
0 y x

)

// R2
(x y ) // R

(xy ) // R
( xy ) // R2 // · · ·

· · · // R2 (
x 0
−y x

) //
��

(
y 0 0
0 0 0

)

R2
��

(
y 0
0 0

)

(
x 0
y x

) // R2
��

( y0 )

(
x 0
−y x

) // R2
��

( 10 )

(
x 0
y x

) // R2 //
��

IdR2

· · ·

Approximations may be trivial, in particular, when the projective dimension of
Im ∂C0 is finite over Q, as is the case in the next example.

Example 4.4. Let R = k[x, y]/(x2, y2) and C the totally acyclic R-complex with
Im ∂C0 = Ry:

C : · · · → R
( y )
−−→ R

( y )
−−→ R

( y )
−−→ R

( y )
−−→ R → · · ·

Then for Q = k[x, y]/(x2), pdQ Im ∂C0 < ∞ and the approximation is [ǫC ] : 0 → C.

Recall (from [AuSm], for example) that a morphism X
ǫ
−→ C is called right

minimal if for every morphism X
f
−→ X such that ǫf = ǫ, we have that f is an

isomorphism. We now point out that the right approximation [ǫC ] : STC → C may
or may not be right minimal.

Proposition 4.5. Suppose that D ∈ Ktac(Q). Then [ǫSD] : STSD → SD is not a
minimal approximation.

Proof. Let K be a Q-free resolution of R. As described in the proof of 3.1, ǫSD :
STSD → SD takes the first component of STSD ≃

⊕c
i=0 SDn−i ⊗Q SKi to

SDn for all n ∈ Z. Thus taking as [f ] : STSD → STSD the morphism sending
SDn ⊗Q SK0 to itself and everything else to zero, we have [ǫSD] ◦ [f ] = [ǫSD] and
[f ] is not an isomorphism in Ktac(R). �

Example 4.6. Let R = k[x, y]/(x2, y2) and C the totally acyclic complex

C : · · · → R
x
−→ R

x
−→ R

x
−→ R → · · ·

Then M = Im ∂C0 = Rx and a free resolution of M over Q = k[x, y]/(x2) is given
by

· · · → Q2

(
x −y2

0 x

)

−−−−−−→ Q2

(
x y2

0 x

)

−−−−−→ Q2

(
x −y2

0 x

)

−−−−−−→ Q2 (x y2 )
−−−−→ Q → 0
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Thus STC takes the form

· · · → R2 ( x 0
0 x )−−−−→ R2 (x 0

0 x )−−−−→ R2 ( x 0
0 x )−−−−→ R2 → · · ·

and ǫC : STC → C is given by (ǫC)n = ( 1 0 ) for all n. This is not a minimal
right approximation. Indeed, consider the morphism f : STC → STC given by
fn = ( 1 0

0 0 ). Then one has ǫCf = ǫC and f is not a homotopy equivalence.

4.7. Approximations by period 2 complexes. Recall that a local ring Q
is a hypersurface ring if Q is the quotient of a regular local ring by a principal
ideal; hypersurface rings are Gorenstein. In this case, Eisenbud [Ei] has shown that
totally acyclic complexes are always periodic of period at most two. Thus in the
setup where Q is a hypersurface (and, as always, that pdQR < ∞ via ϕ : Q → R),
our approximations compare nonperiodic totally acyclic complexes with those of
period two. This setup occurs when R has an embedded deformation [Av].

We next state a few results for later reference. They have to do with compositions
of approximations, in two different senses.

Proposition 4.8. Consider a sequence of finite local ring homomorphisms

Q
ϕ
−→ R′ ψ

−→ R

such that Q and R′ are Gorenstein, pdQR′ < ∞, and pdR′ R < ∞. Then Sψϕ and
Tψϕ are naturally isomorphic to SψSϕ and TϕTψ, respectively.

Proof. This follows from the fact that the assertion is clear for the S functors, and
from uniqueness of adjoints. �

4.9. Upon computing the right approximation [ǫC ] : STC → C, one may iterate
this process. Indeed, complete [ǫC ] to a triangle in Ktac(R) and rotate it to obtain

Σ−1 cone([ǫC ]) → STC → C → .

Now compute a right approximation of Σ−1STC, and repeat. One then obtains a
sequence of maps in Ktac(R):

B : · · · → B3 → B2 → B1 → B0 → C

whereB0 is a right approximation of C, B1 is a right approximation of Σ−1 cone(B0 →
C), etc. Note that since composing two consecutive maps in an exact triangle is
the zero map, one has that the same holds for the maps in B.

Proposition 4.10. Let ϕ : Q → R be a surjective local homomorphism of Goren-
stein rings with pdQR = 1, and let C ∈ Ktac(R). If [ǫC ] : STC → C is the right

approximation of C, then cone([ǫC ]) is isomorphic to Σ2C.

Proof. By the assumptions of the proposition, we have that R = Q/(x) for some
nonzerodivisor x contained in the maximal ideal of Q. Now let t : C → Σ2C be the
cohomology operator defined by the embedded deformation R = Q/(x) (see [Av]).
Then one can show that we have an exact triangle

C
t
−→ Σ2C → ΣSTC →

where the last arrow is the approximation map Σ[ǫC ]. Therefore, after rotation we
have

STC
[ǫC ]
−−→ C

t
−→ Σ2C →

which proves the claim. �
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The following proposition follows from the previous one.

Proposition 4.11. Let ϕ : Q → R be a surjective local homomorphism of Goren-
stein rings with pdQR = 1, and let C ∈ Ktac(R). Then the triangle resolution, as
in 4.9, of C in Ktac(R) with respect to Ktac(Q) has the form

· · · → Σ−2STC → Σ−1STC → STC → C.
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