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a b s t r a c t

Let A be a connected graded noncommutative monomial algebra. We associate to A a finite
graphΓ (A) called the CPS graph of A. Finiteness properties of the Yoneda algebra ExtA(k, k)
including Noetherianity, finite GK dimension, and finite generation are characterized in
terms of Γ (A). We show that these properties, notably finite generation, can be checked
by means of a terminating algorithm.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Complete intersections are a well-studied class of commutative algebras, yet there is not an agreed upon notion of
complete intersection in the case of noncommutative algebras. From the point of view of noncommutative algebraic
geometry, such a generalization should be homological. A starting point for a homological definition of complete intersection
is the statement that for a graded Noetherian commutative k-algebra, the following properties are equivalent:

(i) A is a graded complete intersection
(ii) ExtA(k, k) is a Noetherian k-algebra
(iii) ExtA(k, k) has finite Gelfand–Kirillov (GK) dimension.

This equivalence derives from the combined work of several authors. To the best of our knowledge, (i)⇒(iii) is due to
Tate [18], Gulliksen proved (i)⇒(ii) [14] and (iii)⇒(i) [12,13], and (ii)⇒(i) first appeared in Bøgvad–Halperin [4].

However, conditions (ii) and (iii) are not equivalent for graded Noetherian k-algebras, in fact, not even for algebras with
monomial relations. Since such algebras are a tractable class of algebras with a well-understood projective resolution of the
trivialmodule (see, for example [2,5]), their Yoneda algebras are computable, though often complex. This paper concerns the
study of conditions (ii) and (iii) as well as the finite generation of ExtA(k, k) when A is a connected graded noncommutative
k-algebra with finitely many monomial relations.

To amonomial algebra A, we associate a finite directed graph Γ (A)which we call the CPS graph of A. See Construction 2.1
for the definition of Γ (A). Our first result concerns the Gelfand–Kirillov dimension of the Yoneda algebra E(A) = ExtA(k, k).

Theorem 1.1 (Corollary 2.8). Let A be a monomial k-algebra. If no pair of distinct circuits in Γ (A) have a common vertex, then
GKdim E(A) is the maximal number of distinct circuits contained in any walk. Otherwise, GKdim E(A) = ∞.
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Given any connected graded k-algebra B one can use a noncommutative Gröbner basis to associate to B a monomial
algebra B′ with the property GKdim E(B) ≤ GKdim E(B′). Thus, Theorem 1.1 can provide an easily calculated upper bound
on GKdim E(B), though this bound is not always finite when GKdim E(B) is. See Remark 2.9 below.

The Yoneda product on E(A) can also be described combinatorially in terms of walks in the graph Γ (A). Up to a notion of
equivalence described in Section 2, all nonzero Yoneda products are compositions of admissible walks in Γ (A). Using this
description of the Yoneda product, we are able to characterize finite generation and the Noetherian property in E(A). See
Sections 2 and 3 for definitions of terminology and notation.

Theorem 1.2. Let A be a monomial k-algebra.
(1) (Theorem 3.6) E(A) is finitely generated if and only if for every infinite anchored walk p in Γ (A),p contains a dense edge or

two admissible edges of opposite parity.
(2) (Theorem 5.2) E(A) is left (resp. right) Noetherian if and only if every vertex ofΓ (A) lying on an oriented circuit has out-degree

(resp. in-degree) one and every edge of every oriented circuit is admissible.

The second statement extends a theorem of Green et al. [10] who characterized Noetherianity of E(A) in terms of the
Ufnarovski relation graph of A in the case where A is quadratic.

Theorem 1.2(1) describes an infinite set of criteria to be satisfied for E(A) to be finitely generated. Whether finite
generation of E(A) can be determined by finitely many criteria is a problem of recent interest. Working in the more general
context ofmonomial factor algebras of quiver path algebras, Green and Zacharia [11] describe a (potentially infinite) process
by which finite generation of the Yoneda algebra can be checked. Further progress was made by Davis [7] and Cone [6] who
showed that finite generation can be determined by finitelymany criteria when the given quiver is a cycle or an ‘‘in-spoked’’
cycle. In Section 4 we show the same can be said in our situation; that is, when the quiver consists of a single vertex and
finitely many loops.

Theorem 1.3 (Theorem 4.3). Let A be a monomial k-algebra with gl.dim A = ∞. Let N be the smallest even integer greater than
or equal to 2E2

+E +1where E is the number of edges in Γ (A). The Yoneda algebra E(A) is finitely generated if and only if every
anchored walk of length N or N + 1 is decomposable.

In our experience, determining if E(A) is finitely generated when E(A) has infinite Gelfand–Kirillov dimension can be a
difficult problem, and we were unable to obtain an efficient bound in Theorem 1.3. However, the case GKdim E(A) < ∞ is
much simpler. We describe a recursive algorithm for determining finite generation in that case in Section 4.

We sincerely thank Ed Green for the helpful conversations and illuminating examples he provided in the course of this
project. We also thank the referee for many helpful comments and suggestions.

2. The CPS graph

In [16], C. Phan associated aweighted digraph to anymonomial graded algebraA. One important feature of Phan’s graph is
that a k-basis for E(A) is represented by certain directed paths. After establishing some notation, we recall the unweighted
version of Phan’s graph – which we call the CPS graph of A – and we record a description of a minimal graded projective
resolution of Ak (due to Cassidy and Shelton) in terms of this graph. We also prove several combinatorial facts about the CPS
graph needed later.

Let k be a field. Throughout this paper we use the phrase graded k-algebra or just k-algebra to mean a connected,
N-graded, locally finite-dimensional k-algebra which is finitely generated in degree 1. If A is a graded k-algebra, we use
the term (left or right) ideal to mean a graded (left or right) ideal of A generated by homogeneous elements of degree at
least 2, unless otherwise indicated. The augmentation ideal is A+ =


i≥1 Ai. We abuse notation and use k (or Ak or kA)

to denote the trivial graded A-module A/A+. The bigraded Yoneda algebra of A is the k-algebra E(A) =


i,j≥0 E
i,j(A) =

i,j≥0 Ext
i,j
A (k, k). (Here i denotes the cohomology degree and j denotes the internal degree inherited from the grading on

A.) Let Ep(A) =


q E
p,q(A).

Let s ∈ N and let V = spank{x1, . . . , xs}. We denote the tensor algebra on V by T (V ). The tensor algebra is a graded
k-algebra, graded by tensor degree. We denote the tensor degree of a homogeneous element w ∈ T (V ) by degw. By a
monomial in T (V )wemean a pure tensor with coefficient 1. We consider 1T (V ) amonomial. By amonomial algebra, wemean
an algebra of the form A = T (V )/I where I is an ideal of T (V ) generated by finitely many monomials. Such an algebra A is a
graded k-algebra with the grading inherited from the tensor grading on T (V ).

LetM be the set ofmonomials in T (V ). Multiplication in T (V ) induces the structure of amonoid onM . Let I = ⟨w1, . . . wr⟩

be an ideal in T (V ). We assume that the wi form a minimal set of monomial generators for I and we let di = degwi be the
tensor degree of wi for each i. Recall that we assume every di ≥ 2. Let A = T (V )/I and let π : T (V ) → A be the natural
surjection.

Construction 2.1 (CPS Graph). Supposem, w ∈ M−I andw⊗m ∈ I . Let L(w,m) = w′ wherew = w′′
⊗w′ forw′, w′′

∈ M
and w′ is minimal such that w′

⊗ m ∈ I . For m ∈ M − I define

Am = {w ∈ M − I : w ⊗ m ∈ I and L(w,m) = w}.

Then the images of elements of Am in A generate the left annihilator of π(m).
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Let G0 = {x1, . . . xs} and for i ≥ 1 let Gi =


m∈Gi−1
Am. Finally, let G =


i≥0 Gi. Define the CPS graph of A to be the

directed graph Γ (A) with vertex set G, and edgesm1 → m2 wheneverm2 ∈ Am1 .

We note that the graph Γ (A) is finite. The graph may have loops and parallel edges with opposite orientation, but it has no
parallel edges with the same orientation.

Example 2.2. Let A = k⟨a, b, c, d⟩/⟨abc, cdab⟩ and B = A/⟨bcda⟩. For A we have G0 = {a, b, c, d}, G1 = {ab, cda}, G2 =

{ab, cd}, and G3 = {ab, cd} = Gi for i > 3. For the algebra B, G0 = {a, b, c, d}, G1 = {ab, cda, bcd} = Gi for odd i > 1, and
G2 = {a, b, cd} = Gj for even j > 2. The graphs Γ (A) and Γ (B) are shown below.

Γ (A)

c // ab
))
cdii

b // cda

OO

a

d

Γ (B)

c // ab
))
cdii

b
**
cdahh

a
**
bcdhh

d

Remark 2.3. An obvious, but extremely important feature of the CPS graph is that there is a directed edge m1 → m2 with
m1 ∈ G0 if and only if m2 ⊗ m1 is a minimal generator of I . As illustrated by Proposition 2.7 below, this correspondence
parallels the standard identification of Ext2A(k, k) with the graded dual of the space I/(V ⊗ I + I ⊗ V ).

If the defining relations of amonomial algebra A are quadratic, A is Koszul [17]. In that case,Γ (A) is Ufnarovski’s ‘‘relation
graph’’ [19] for the Koszul dual algebra A!. We also note that because we consider only minimal left annihilators, the CPS
graph Γ (A) is quite different from the notion of ‘‘zero-divisor graph’’ studied recently in [1].

We adopt some standard graph-theoretic terminology. By a walk we mean a finite or infinite sequence v0v1v2 · · · of
vertices where vi → vi+1 is a directed edge for all 0 ≤ i < n. If v0v1 · · · vn is a finite walk, we say the walk has length n.
A walk is called an edge path or simply a path if it contains no repeated edges. By a closed walk of length n we mean a walk
of length n such that vn = v0. A circuit of length n is a closed walk of length n such that v0, . . . , vn−1 are distinct. In the
context of a weighted digraph, we abuse this terminology slightly and use ‘‘walk’’, ‘‘path’’, and ‘‘circuit’’ to refer to sequences
of vertices in the underlying unweighted graph. If p and q are walks of length n and m respectively, we say p extends q or q
is a prefix of p and write q ⊢ p if n ≥ m and pi = qi for all 0 ≤ i ≤ m.

In [5, Section 5], Cassidy and Shelton give a combinatorial description of a minimal graded projective left A-module
resolution P• of Ak in terms of monomial matrices. We briefly recount their resolution here, indexing the bases of each
graded projective module by certain walks in Γ (A).

For ease of exposition, we make the following definition.

Definition 2.4. A walk w in Γ (A) is called anchored if w0 ∈ G0.

Remark 2.5. Anchored walks of length i in Γ (A) correspond to the sets Γi described in [11].

Let Wn denote the set of all anchored walks of length n in Γ (A). For each w ∈ Wn, let dw =
n

i=0 degwi where degwi
denotes the tensor degree of the monomial wi. Let A(−dw) be the graded free left A-module of rank 1 with grading shift
A(−dw)p = Ap−dw . Choose a basis for A(−dw) and denote this element by ew . Let P0 = A be the graded free module with
fixed basis element e∅ and for j > 0, let

Pj =


w∈Wj−1

A(−dw).

Define dj : Pj → Pj−1 on the A-basis {ew : w ∈ Wj−1} by setting dj(ew) = π(wj−1)ew̄ where w̄ = w0 · · · wj−2 if j ≥ 2
and w̄ = ∅ if j = 1. Extend dj A-linearly to all of Pj. Since wj−1 → wj is an edge in Γ (A) only if wj ∈ Awj−1 , it is clear that
djdj+1 = 0 for j ≥ 0. The following lemma is a straightforward consequence of the definition of Γ (A).

Lemma 2.6. The complex (P•, d•) described above is a minimal graded projective resolution of Ak.

Moreover, the bases for the Pj can be ordered so the matrices of the dj with respect to the ordered bases are precisely the
monomial matrices described in [5]. The next fact follows immediately from Lemma 2.6.
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Proposition 2.7. Let A be a monomial k-algebra and i ∈ N. Then the graded duals {εw} of the basis elements {ew} where w is an
anchored walk of length i in Γ (A) form a k-basis for Exti+1

A (k, k).

We make extensive use of these bases throughout the paper. In Section 3, it becomes useful to define the symbols ew

and εw for non-anchored ‘‘admissible’’ walks (see Definition 2.11). Nonetheless, these newly-defined symbols still refer to
elements of the bases of Proposition 2.7.

Several properties of A and E(A) are immediate from Proposition 2.7. We denote the Gelfand–Kirillov dimension of a
k-algebra A by GKdim A.
Corollary 2.8. (1) If Γ (A) contains no circuit, then gl.dim A is equal to the length of the longest path in Γ (A). Otherwise,

gl.dim A = ∞.
(2) GKdim E(A) = ∞ if and only if Γ (A) contains distinct circuits with a common vertex.
(3) If no pair of distinct circuits in Γ (A) have a vertex in common, then GKdim E(A) is the maximal number of circuits contained

in any walk (ignoring multiplicity).
(4) The Hilbert series of E(A) is a rational function.

Proof. (1) is clear. (2)–(4) are standard (see [19]). �
Remark 2.9. To any connected graded k-algebra B = T (V )/J (we do not assume that J is generated by monomials) one can
associate a monomial algebra in the usual way. Choose an ordered basis of V and induce a total ordering of the monoid M
via degree–lexicographic order. Let F be a noncommutative Gröbner basis of J with respect to this ordering. Let ht(F ) be
the set of highest terms of elements of F and let B′

= T (V )/⟨ht(F )⟩. Let

PB(y, z) =


p,q

dim Extp,qB (k, k)ypzq

denote the Poincare series of B. From the well-known coefficientwise inequality PB(y, z) ≤ PB′(y, z) (see Lemma 3.4 of [2])
we can deduce GKdim E(B) ≤ GKdim E(B′). Equality holds in the important case where the Gröbner basis for J consists
of homogeneous polynomials of the same degree (see Corollary 4.6 of [15]). Thus Corollary 2.8 can sometimes provide an
easily calculated upper bound on GKdim E(B). For further examples, see Section 6.

It is also interesting to note that E(A) has either exponential or polynomial growth — this is the case for commutative
k-algebras (see [9] for the characteristic 0 graded case and [3] for the case of a local ring with residue field k). Observe
GKdim E(A) = GKdim E(B) = 1 for the algebras A and B from Example 2.2.

Given a minimal projective resolution of Ak, one can compute the Yoneda product of classes ε1 and ε2 in E(A) by lifting
a representative of ε2 through the resolution to the appropriate cohomology degree and composing with a representative
of ε1. For a monomial algebra A, we wish to describe the Yoneda product combinatorially in terms of walks in the graph
Γ (A). To do this, we introduce a notion of walk equivalence as a combinatorial analog of lifting a representative through a
projective resolution.

We call two walks p = p0 · · · pn and q = q0 · · · qm in a CPS graph Γ (A) equivalent ifm = n and

pn ⊗ pn−1 ⊗ · · · ⊗ p0 = qm ⊗ qm−1 ⊗ · · · ⊗ q0

as elements ofM . If p and q are equivalent, we write p ∼ q. It is clear that ∼ is an equivalence relation on walks in Γ (A).

Lemma 2.10. Let Γ (A) be a CPS graph, and let p and q be equivalent walks of length n > 0 in Γ (A). Then
(1) the prefix walks p0 · · · p2k+1 and q0 · · · q2k+1 are equivalent for all 0 ≤ k ≤ ⌊

n
2⌋.

(2) if n is even, then pn = qn.
(3) we have p2k+1 ⊗ p2k = q2k+1 ⊗ q2k for all 0 ≤ k ≤ ⌊

n
2⌋.

(4) if deg(p0) ≥ deg(q0), then

deg(pi) ≥ deg(qi) if 0 < i ≤ n is even
deg(qi) ≥ deg(pi) if 0 < i ≤ n is odd

(5) the walk q is unique if it is anchored.

Proof. To prove (1), we induct on k. Let k = 0. By switching the variables p and q if necessary, there is no loss of generality
in assuming deg(p0) ≥ deg(q0). Since

pn ⊗ · · · ⊗ p0 = qn ⊗ · · · ⊗ q0

there exists a unique monomialm ∈ M − I such that m ⊗ q0 = p0. We have q1 ⊗ q0 ∈ I , m ⊗ q0 /∈ I , and

pn ⊗ · · · ⊗ p1 ⊗ m ⊗ q0 = qn ⊗ · · · ⊗ q1 ⊗ q0

so there is a unique monomial m′
∈ M − I such that q1 = m′

⊗ m. Now, m′
⊗ p0 = m′

⊗ m ⊗ q0 = q1 ⊗ q0 ∈ I and
L(q1, q0) = q1, so L(m′, p0) = m′ and m′

∈ Ap0 . Thus

pn ⊗ · · · ⊗ p1 ⊗ p0 = qn ⊗ · · · ⊗ q1 ⊗ q0
= qn ⊗ · · · ⊗ m′

⊗ p0
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and p1,m′
∈ Ap0 , so p1 = m′. Hence

p1 ⊗ p0 = m′
⊗ p0 = q1 ⊗ q0

as desired. For the induction step, assume that

p2k+1 ⊗ · · · ⊗ p0 = q2k+1 ⊗ · · · ⊗ q0

and deg(p2k+2) ≥ deg(q2k+2) and proceed as in the base case. This completes the proof of (1).
Statements (2) and (3) follow immediately from (1).
We consider statement (4). In light of (2) and (3), it suffices to prove deg(qi) ≥ deg(pi) for 0 < i ≤ n odd. Since

q1 ⊗ q0 = p1 ⊗ p0 and deg(p0) ≥ deg(q0), it is clear that deg(q1) ≥ deg(p1). Thus the result holds for n ≤ 2. Assume that
n > 2 and for 0 < i < n − 1 odd deg(qi) ≥ deg(pi). Since qi ⊗ qi−1 = pi ⊗ pi−1, there exists m ∈ M such that qi = pi ⊗ m.
Suppose toward contradiction that deg(pi+1) < deg(qi+1). Since qi+2⊗qi+1 = pi+2⊗pi+1, there existsm′

∈ M , deg(m′) > 0
such that qi+1 = m′

⊗ pi+1. Since pi+1 ⊗ pi ∈ I , we have pi+1 ⊗ qi = pi+1 ⊗ pi ⊗m ∈ I . The fact that deg(m′) > 0 contradicts
the assumption that L(qi+1, qi) = qi+1. So deg(qi+1) ≤ deg(pi+1) and hence deg(qi+2) ≥ deg(pi+2). Statement (4) now
follows by induction.

To prove (5), suppose q′ is another walk such that p ∼ q′ and q′

0 ∈ G0. Then q ∼ q′ and q1 ⊗ q0 = q′

1 ⊗ q′

0. Since G0
consists solely of degree 1 monomials, q0 = q′

0 so q1 = q′

1.
Suppose inductively that qi = q′

i for all 0 ≤ i ≤ 2k + 1 < n. If n = 2k + 2, the induction hypothesis and the definition
of equivalence imply that q2k+2 = q′

2k+2.
If n > 2k + 2, q2k+3 ⊗ q2k+2 = q′

2k+3 ⊗ q′

2k+2. By switching the variables q and q′ if necessary, we can assume
deg(q2k+2) ≥ deg(q′

2k+2), so q2k+2 = m ⊗ q′

2k+2 for somem ∈ M . But L(q2k+2, q2k+1) = q2k+2 and

q′

2k+2 ⊗ q2k+1 = q′

2k+2 ⊗ q′

2k+1 ∈ I

by the induction hypothesis. Thus m = 1, q2k+2 = q′

2k+2, and hence q2k+3 = q′

2k+3. Statement (5) now follows by
induction. �

Since the finite anchored walks in Γ (A) enumerate a k-basis for E(A), we make the following definition.

Definition 2.11. A finite walk in Γ (A) is called admissible if it is equivalent to an anchored walk.

By Lemma 2.10(5), every admissible walk is equivalent to a unique anchored walk. In Example 2.2, the edge ab → cd
is an admissible walk of length 1 in both Γ (A) and Γ (B), but the edge cd → ab is admissible in neither graph. In Phan’s
original weighted digraph, the edge weighting distinguished admissible edges from their counterparts. That distinction is
too coarse for our purposes, but the importance of admissible edges seems evident from the following useful facts about
admissible walks. Recall that if p and q are walks of length n and s respectively, we say q extends p if n ≤ s and qi = pi for
all 0 ≤ i ≤ n.

Proposition 2.12. Let Γ (A) be a CPS graph, and let p be an admissible walk of length n in Γ (A). Let q be a walk of length s such
that q extends p. If either n or s − n is even, then q is admissible.

Proof. An admissible walk of length 0 consists of a single vertex in G0, so the statement is trivial if n = 0. The statement is
also trivial if s = n. So assume n > 0, s − n > 0, and let r be a path in Γ (A) such that p ∼ r and r0 ∈ G0.

If n is even, then rn = pn by Lemma 2.10(2). It follows immediately that the path r ′
= r ′

0 · · · r ′
s given by r ′

i = ri for
0 ≤ i ≤ n and r ′

i = qi for n + 1 ≤ i ≤ s is equivalent to q and has r ′

0 ∈ G0.
Suppose n and s are odd. If rn = pn, we can proceed as above, so assume that rn ≠ pn. By Lemma 2.10(3) and (4), there

exists a monomial m ∈ M , deg(m) > 0 such that rn = pn ⊗ m = qn ⊗ m. Thus qn+1 ⊗ rn ∈ I . Put rn+1 = L(qn+1, rn) and let
m′

∈ M such that qn+1 = m′
⊗ rn+1. Now,

qn+2 ⊗ m′
⊗ rn+1 = qn+2 ⊗ qn+1 ∈ I.

Since qn+1 /∈ I and L(qn+2, qn+1) = qn+2, it follows that qn+2 ⊗ m′
∈ Arn+1 . Put rn+2 = qn+2 ⊗ m′. Then by construction,

r0 · · · rn+2 is a well-defined walk equivalent to p′
= q0 · · · qn+2 and r0 ∈ G0. Thus p′ is an admissible walk of length n + 2

and q is an extension of p′ of length s. The result now follows by induction on s − n. �

We show in the next section that E(A) is finitely generated if Γ (A) has ‘‘enough’’ admissible walks. To make this more
precise, we make the following definition.

Definition 2.13. Let p be an infinite walk in Γ (A) and let e = pipi+1 be an admissible edge in p. We call e dense in p if e has
an admissible even-length extension in p.

In Example 2.2, c → ab → cd → ab → cd · · · is the only infinite anchored walk in Γ (A). The admissible edge ab → cd
is dense in this walk since

ab → cd → ab ∼ b → cda → ab.
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However, the edge ab → cd is not dense in the same walk in Γ (B). The equivalent anchored walks corresponding to odd-
length extensions of ab → cd begin at vertex b and end at either b or cda. It follows that no even length extension of ab → cd
is admissible because condition (2) of Lemma 2.10 cannot be satisfied.

An admissible edge emay belong to many infinite walks. The edge emay be dense in some infinite walks, but not others.
Furthermore, e may not be dense in an infinite walk w, but w may contain some other dense edge. See Example 6.1.

The following criterion for establishing density is immediate from Lemma 2.10(2).

Lemma 2.14. Let w be a (possibly infinite) walk in Γ (A) and let e = wiwi+1 be an admissible edge in w. Let q be any odd-length
extension of e inw and let q′ be the unique anchored walk equivalent to q. Then every even-length extension of q inw is admissible
if and only if q′

t = wi+t for some even t ≥ 0.

3. Multiplicative structure

In this section we show certain extensions of walks in Γ (A) correspond to Yoneda products in E(A) and use the result to
combinatorially characterize finite generation of E(A). Recall from Proposition 2.7 that if w is an anchored walk of length n
in Γ (A), we denote the corresponding A-basis element of Pn+1 by ew and the graded dual of ew by εw .

Fix an anchored walk q of length n. To connect the Yoneda product in E(A) to extensions of walks in Γ (A), we explicitly
construct lifts of εq through the resolution (P•, d•) defined in Section 2. We need one additional definition before describing
the construction.

Definition 3.1 ([5]). An element r in an ideal I ⊂ T (V ) is called essential if r is not in the ideal generated by V ⊗ I + I ⊗ V .

We note that a monomial r in a monomial ideal I is essential if and only if r is a minimal generator of I . Hence a walk
w0w1 in Γ (A) is admissible if and only if w1 ⊗ w0 is a minimal generator of I .

For i ≥ 0, we define A-module maps fi such that the following diagram commutes.

· · · // Pn+3
dn+3 //

f2
��

Pn+2
dn+2 //

f1
��

Pn+1

f0
��

εq

  AA
AA

AA
AA

· · · // P2
d2 // P1

d1 // P0 // k

(1)

For i ≥ 0 let Qn+i be the graded free submodule of Pn+i spanned by the set {er : q ⊢ r} and let Zn+i be the complement
to Qn+i in Pn+i. We observe that P≥n = Q≥n ⊕ Z≥n as complexes of graded free left A-modules. For all i ≥ 0, we define
fi(Zn+i+1) = 0.

We define fi on the specified A-basis of Qn+i+1 in several steps.

(i) Define f0(eq) = e∅.
(ii) For anywalk r such that er ∈ Qn+2, we have rn+1 = m⊗xj for a uniquem ∈ M and generator xj. Define f1(er) = π(m)exj .
(iii) Suppose d > 2 and r is a walk such that er ∈ Qn+d. Recall that the walk rn+1rn+2 is admissible if and only if rn+2 ⊗ rn+1

is essential. (See Remark 2.3.) If rn+2 ⊗ rn+1 is not essential, we define fd−1(er) = 0. If rn+2 ⊗ rn+1 is essential, our
construction depends on the parity of d.

If d is odd and rn+1rn+2 is admissible, the walk rn+1 · · · rn+d−1 of length d − 2 is admissible by Proposition 2.12. Let
r ′

= r ′

0 · · · r ′

d−2 be the unique anchored walk equivalent to rn+1 · · · rn+d−1. Then er ′ ∈ Pd−1 and we define fd−1(er) = er ′ .
If d is even and rn+1rn+2 is admissible, then the length d − 3 walk rn+1 · · · rn+d−2 is admissible. Let r ′

0 · · · r ′

d−3 be
the equivalent anchored walk. Lemma 2.10(3) and (4) imply that there exists a unique monomial m ∈ M such that
rn+d−2 ⊗ m = r ′

d−3. Since rn+d−1 ⊗ rn+d−2 ∈ I , we have rn+d−1 ⊗ r ′

d−3 ∈ I . Put r ′

d−2 = L(rn+d−1, r ′

d−3) and letm′
∈ M be

the unique monomial such that rn+d−1 = m′
⊗ r ′

d−2. Then r ′
= r ′

0 · · · r ′

d−2 is a well-defined anchored walk, er ′ ∈ Pd−1,
and we may define fd−1(er) = π(m′)er ′ .

To summarize, for d > 0 and r a walk such that er ∈ Qn+d, we define

fd−1(er) =


e∅ if d = 1
π(m)exj if d = 2 and rn+1 = m ⊗ xj
er ′ if rn+2 ⊗ rn+1 is essential and d > 2 odd
π(m′)er ′ if rn+2 ⊗ rn+1 is essential and d > 2 even
0 else

where r ′ is a uniquely determined anchored walk of length d − 2 and rn+d−1 = m′
⊗ r ′

d−2. Extending the definitions of the
fi A-linearly, we obtain a sequence of A-module maps.

Lemma 3.2. With fi defined as above, the diagram (1) commutes.

Proof. Because fi(Zn+i+1) = 0 for all i ≥ 0 and Z>n is a subcomplex of P>n, it suffices to show commutativity for the complex
Q>n. We compute the first few squares explicitly.
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(d = 1) The augmentation map ϵ : P0 → k takes e∅ → 1, so εq = ϵf0.
(d = 2) Let r be a walk of length n + 1 in Γ (A) which extends q. Then

f0dn+2(er) = f0(π(rn+1)eq) = π(rn+1)e∅.

On the other hand, rn+1 = m ⊗ xj for uniquem ∈ M and generator xj so

d1f1(er) = d1(π(m)exj) = π(m)π(xj)e∅ = π(rn+1)e∅.

(d = 3) Let r be a walk of length n + 2 in Γ (A) which extends q. If rn+2 ⊗ rn+1 is essential, then

d2f2(er) = d2(er ′) = π(r ′

1)er ′

where r ′
= r ′

0r
′

1 is anchored, equivalent to rn+1rn+2, and r ′ = r ′

0. On the other hand,

f1(dn+3(er)) = f1(π(rn+2)er̄) = π(rn+2)π(m)exj = π(rn+2 ⊗ m)exj

where r̄ = r0 · · · rn+1 and rn+1 = m ⊗ xj. In this case, since r ′

0 ∈ G0 and r ′

1 ⊗ r ′

0 = rn+2 ⊗ rn+1, we have r ′

0 = xj and
r ′

1 = rn+2 ⊗ m as desired.
If rn+2 ⊗ rn+1 is not essential, f2(er) = 0 and π(rn+2 ⊗ m) = 0 since rn+2 ∈ Arn+1 .

For d > 3, the arguments are similar to those above and are omitted. The key observation is that r ′

0 · · · r ′

d−4 is equivalent
to rn+1 · · · rn+d−3 by Lemma 2.10(1) so r̄ ′

= r ′

0 · · · r ′

d−4 by uniqueness (Lemma 2.10(5)). The definitions of the fi then imply
rn+d−2 = m′

⊗ r ′

d−3 if d is odd and rn+d−1 = m′
⊗ r ′

d−2 if d is even, from which commutativity follows. �

We are ready to give a combinatorial description of the Yoneda composition product. Though our basis for E(A) is
enumerated by anchoredwalks, themost natural combinatorial interpretation of Yoneda composition in our setting dictates
that we append a (not necessarily anchored) admissible walk to the end of an anchored walk. Consequently, we find it
conceptually helpful and notationally convenient to define the symbol εw for any admissible walk w to mean the dual basis
element εq where q is the unique anchored walk equivalent to w guaranteed by Lemma 2.10. If α, β ∈ E(A), we denote the
Yoneda product by α ⋆ β .

Proposition 3.3. Let p = p0 · · · ps and q = q0 · · · qn be admissible walks in Γ (A). Then εp ⋆ εq = 0 unless there exist walks
p′

∼ p and q′
∼ q such that q′ is anchored and q′

n → p′

0 is an edge inΓ (A). In that case εp⋆εq = εw wherew ∼ q′

0 · · · q′
np

′

0 · · · p′
s.

Proof. By Lemma 2.10(5) it suffices to consider the case where q is anchored. For i ≥ 0, let fi be defined as above. By
definition of Yoneda composition product, εp ⋆ εq = εpfs+1. Let r be any anchored walk of length n + s + 1. If r does not
extend q, then εpfs+1(er) = 0. If r extends q, then

εpfs+1(er) =


εp(π(m)exj) if s = 0 and rn+1 = m ⊗ xj
εp(er ′) if s > 0 is odd and rn+2 ⊗ rn+1 is essential
εp(π(m′)er ′) if s > 0 is even and rn+2 ⊗ rn+1 is essential
0 else

where r ′ andm′ are defined as in (iii) above. Thus εpfs+1(er) = 0 unless r extends q, p ∼ r ′, and, if s is even, r ′
s = rn+s+1. The

last condition implies r ′
∼ rn+1 · · · rn+s+1 when s is even. (This equivalence always holds when s is odd.) So if εpfs+1(er) ≠ 0,

we have εpfs+1(er) = 1 and it follows that εp ⋆ εq = εw where w = q0 · · · qnrn+1 · · · rn+s+1. Since p ∼ r ′
∼ rn+1 · · · rn+s+1,

setting p′
= rn+1 · · · rn+s+1 gives the desired result. �

We call a class α ∈ E i(A) for i > 0 decomposable if α is in the subalgebra of E(A) generated by


j<i E
j(A). Otherwise we

call α indecomposable. Proposition 3.3 illustrates a nice feature of our chosen k-basis for E(A).

Corollary 3.4. Ifw is an anchored walk of length n in Γ (A), then εw is decomposable if and only if there exists an admissible walk
p = p0 · · · pm such that w = w0 · · · wip0 · · · pm for some 0 ≤ i < n.

Wenote this implies that the relations of E(A) consist exclusively ofmonomials and binomials. That E(A) can be presented
this way appears as Theorem B in [11].

We are nearly ready to give a combinatorial characterization of finite generation. We call an admissible walk w
decomposable (resp. indecomposable) if εw is decomposable (resp. indecomposable) in E(A).

The following important fact is an application of the classical König’s Lemma (see [8] p. 1046); its proof by induction is
omitted.

Lemma 3.5. If Γ (A) contains infinitely many indecomposable finite anchored walks, there exists an infinite anchored walk with
infinitely many indecomposable finite prefixes.

Our main theorem characterizes infinite walks with infinitely many indecomposable prefixes. In the next section, we
give a finite procedure for checking these conditions. If p is a walk of length n in Γ (A), letp = p1 · · · pn be the walk p with
the initial edge deleted. Recall from Section 2 that if e is an admissible edge in an infinite walk p, we call e dense in p if e has
an admissible even-length extension in p.
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Theorem 3.6. Let A be a monomial k-algebra. The following are equivalent.

(1) E(A) is finitely generated.
(2) Every infinite anchored walk in Γ (A) has finitely many indecomposable prefixes.
(3) For every infinite anchored walk p in Γ (A),p contains a dense edge or two admissible edges of opposite parity.

Here ‘‘opposite parity’’ means the number of edges properly between the two admissible edges is even. See Section 6 for
an illustration of the theorem.

Proof. The equivalence of (1) and (2) follows from Lemma 3.5. We prove that (2) and (3) are equivalent.
Let p be an infinite anchored walk in Γ (A). Ifp contains a dense edge e, then there exists an even-length extension e ⊢ q

in p such that q is admissible. By Proposition 2.12, every extension of q is admissible, so by Corollary 3.4, p has only finitely
many indecomposable prefixes.

By Proposition 2.12, every odd-length extension of an admissible edge is admissible. Hence ifp has admissible edges of
opposite parity, p has only finitely many indecomposable prefixes.

Suppose instead thatp has no dense edges and all admissible edges inp have the same parity. Ifp contains no admissible
edges, then Corollary 3.4 implies that every finite prefix of p is indecomposable. If p contains an admissible edge, let
e = pipi+1 be the admissible edge with i minimal. Since admissible edges have the same parity, for n > 0 the admissible
edges in p0 · · · pi+2n have the form pi+2jpi+2j+1 for 0 ≤ j < n. Since a walk of the form pi+2j · · · pi+2n has even length andp
contains no dense edges, p0 · · · pi+2n is indecomposable for all n > 0 by Corollary 3.4. �

Remark 3.7. If w is an infinite walk and for j > 0, wjwj+1 is a dense edge in w, then any admissible edge wj−2iwj−2i+1,
0 ≤ i ≤ ⌊

j
2⌋ is also dense in w. This follows from the fact that wj−2i · · · wj−1 is an odd-length extension of wj−2iwj−2i+1,

Propositions 2.12, 2.7 and 3.3. Thus w contains a dense edge if and only if the first admissible edge in w is dense in w. It
follows from the discussion in Section 2 that for the algebras A and B from Example 2.2, E(A) is finitely generated and E(B)
is not.

4. An upper bound for checking finite generation

At first glance, verification of the conditions of Theorem 3.6 appears to require an infinite procedure, in general. The
infinitude arises both from the number of infinite walks in Γ (A) and the determination of edge density. In this section we
establish an upper bound on the cohomological degree of an indecomposable element if E(A) is finitely generated.

For the first time, the distinction between ‘‘path’’ and ‘‘walk’’ is important. Let L be the maximal length of an anchored
edge path p in Γ (A) with pL−1pL an admissible edge, and no edge pipi+1 admissible for 0 < i < L− 1. Let S be the size of the
largest edge equivalence class, and let E be the number of edges of Γ (A). We note that S = 1 if and only if every admissible
edge is anchored. The bound we obtain below depends on L, S, and E . The bound stated in the Introduction is then obtained
from the obvious inequalities L ≤ E and S − 1 ≤ E .

Finite generation is easy to detect when S = 1, so we handle that case first.

Theorem 4.1. Let A be a monomial k-algebra with gl.dim A = ∞ and S = 1. Then E(A) is finitely generated if and only if every
circuit in Γ (A) contains a vertex in G0.

Proof. If every circuit in Γ (A) contains a vertex in G0, then for any infinite anchored walk w, the walk w contains a vertex
in G0. Thus w contains a dense edge, and because w was arbitrary, E(A) is finitely generated by Theorem 3.6.

Since gl.dim A = ∞, the graph Γ (A) contains a circuit. If Γ (A) contains a circuit C missing G0, let p be an anchored path
of length n > 0 such that pn is in C . Since S = 1, neitherp nor C contains an admissible edge. Let q be the infinite extension
of p defined by repeatedly traversing C . Thenq contains no admissible edge; hence every prefix of q is indecomposable by
Corollary 3.4 and E(A) is not finitely generated by Theorem 3.6. �

For the rest of this section, we assume S > 1, so non-anchored admissible edges exist and L > 1. Next we establish an
important upper bound.

Lemma 4.2. Suppose q is a walk of length N > 2E(S − 1) + L in Γ (A). Assume that S > 1 andq contains an admissible edge
qjqj+1 for 0 < j < L. Let p = qjqj+1 · · · qN if N − j is even and p = qjqj+1 · · · qN−1 if N − j is odd. Then

(1) p is admissible
(2) for all 0 ≤ i ≤ 2E(S − 1), we have q2i+jq2i+j+1 ∼ p′

2ip
′

2i+1 where p′
∼ p and p′ is anchored.

(3) Either
(a) q2i+jq2i+j+1 = p′

2ip
′

2i+1 for some 0 ≤ i ≤ 2E(S − 1) or
(b) there exist 0 ≤ c < d ≤ 2E(S − 1) such that

q2c+jq2c+j+1 = q2d+jq2d+j+1 and p′

2cp
′

2c+1 = p′

2dp
′

2d+1.
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Proof. Statement (1) is immediate from Proposition 2.12 since the length of p is odd. Statement (2) then follows from
Lemma 2.10. To prove (3), let E denote the set of edges of Γ (A) and let

O = {(e1, e2) ∈ E × E : e1 ∼ e2, e1 ≠ e2}.

Then |O| ≤ E(S−1). Since thewalks p and p′ consist of at least 2E(S−1) edges ofΓ (A), either one of the pairs of equivalent
edges

(q2i+jq2i+j+1, p′

2ip
′

2i+1) 0 ≤ i ≤ E(S − 1)

is not in O, in which case (a) holds, or some element of O appears twice, in which case (b) holds. �

Theorem 4.3. Let A be a monomial k-algebra with gl.dim A = ∞ and S > 1. Let N be the smallest even integer greater than
or equal to 2E(S − 1) + L + 1. The Yoneda algebra E(A) is finitely generated if and only if every anchored walk q of length N or
N + 1 is decomposable.

Since S − 1 and L are at most E , we obtain the weaker, but more easily stated bound of 2E2
+ E + 1 mentioned in the

Introduction.

Proof. Suppose every anchored walk of length N or N + 1 is decomposable. Let q be any anchored walk of length N + 1.
Then q and q′

= q0 · · · qN are both decomposable. By Corollary 3.4,q′ contains an admissible edge qiqi+1. By Proposition 2.12,
every odd length extension of qiqi+1 is admissible. This can account for the decomposability of only one of q and q′. Since
both are decomposable, either q contains an admissible edge whose parity is opposite qiqi+1 or an even length extension of
qiqi+1 is admissible, making qiqi+1 dense in any infinite walk with prefix q. Since q was arbitrary, E(A) is finitely generated
by Theorem 3.6.

Conversely, suppose Γ (A) contains an indecomposable anchored walk q of length N or N + 1. We will construct an
infinite anchored walk w in Γ (A) in which all admissible edges have the same parity, but none are dense in w. That E(A) is
not finitely generated will then follow from Theorem 3.6.

By the discussion preceding Lemma 4.1, we have S > 1; henceq contains a circuit. Ifq contains no admissible edge,
or if the first admissible edge ofq follows a circuit inq, we can construct an infinite walk in Γ (A) in which every prefix
is indecomposable as in the proof of Lemma 4.1. Otherwise, let 0 < j < L be minimal such that qjqj+1 is an admissible
edge ofq.

Since q is indecomposable, Proposition 2.12 implies the length of q and the index jmust have opposite parity.We consider
only the case where q has length N , the case of length N + 1 being identical after the obvious necessary index shift. Let
p = qj · · · qN−1. By Lemma 4.2(1), p is admissible, so let p′ be the unique anchored walk equivalent to p.

The walk qj · · · qN is not admissible, so by Lemma 2.14 we must have q2i+j ≠ p′

2i for all 0 ≤ i ≤ 2E(S − 1). Therefore,
we have q2i+jq2i+j+1 ≠ p′

2ip
′

2i+1 for all 0 ≤ i ≤ 2E(S − 1). By Lemma 4.2(3), there exist 0 ≤ c < d ≤ 2E(S − 1) such that
q2c+jq2c+j+1 = q2d+jq2d+j+1 and p′

2cp
′

2c+1 = p′

2dp
′

2d+1.
Let z = q2c+j · · · q2d+j−1, let z ′

= p′

2c · · · p′

2d−1 and let w be the infinite walk

q0 · · · q2c+j−1zzz · · · .

Since q2c+j = q2d+j and q2d+j−1 → q2d+j is an edge in Γ (A), the walk w is indeed well-defined. Likewise, the walk

w′
= p′

0 · · · p′

2d−1z
′z ′z ′

· · · ,

is well-defined. Since all admissible edges ofq have the same parity as qjqj+1, the same is true for w. Moreover, every
admissible extension of qjqj+1 in w is a prefix of w′. Since q2i+j ≠ p′

2i for all 0 ≤ i ≤ d as noted above, the edge qjqj+1
is not dense in w by Lemma 2.14. By Remark 3.7, w contains no dense edges. Therefore, E(A) is not finitely generated by
Theorem 3.6. �

In many cases, one can determine if E(A) is finitely generated well before the upper bound above. Indeed if
GKdim E(A) = 1, there are finitely many infinite anchored walks. If d = GKdim E(A) < ∞, it is easy to describe a recursive
procedure:

(1) Analyze the (finite number of) subgraphs of Γ (A)with at most d−1 distinct circuits (ignoring multiplicity) in any walk.
(2) If no anchored walk with infinitely many indecomposable prefixes is found, let M be the maximal multiplicity of a

circuit in an indecomposablewalk. Analyze the (finite number of) infinitewalksw containing d distinct circuits (ignoring
multiplicity) such that the first d − 1 circuits of w occur with multiplicity ≤ M.

5. The Noetherian property

Green et al. [10] observed that if A is a monomial quadratic algebra, it is possible to determine if E(A) is Noetherian by
considering its Ufnarovski relation graph. As noted in Section 2, if A is a monomial quadratic algebra, then Γ (A) is precisely
the Ufnarovski graph of the Koszul dual A! ∼= E(A) with edge orientations reversed. In this section we prove an analog of
Green et al.’s ‘‘Noetherianity’’ theorem (Theorem 5.4 of [10]) holds for Γ (A).
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The following lemma illustrates an important difference between quadratic monomial algebras and monomial algebras
with defining relations in higher degrees. The lemma also conveys the sense in which Theorem 5.2 below generalizes the
result in [10].

Lemma 5.1. Let A be a monomial k-algebra such that the defining ideal of A is generated by quadratic monomials. Then G = G0
and every edge of Γ (A) is admissible.

Proof. Since the minimal generators of I are quadratic, for any generator xj, Axj consists of linear monomials. Thus G1 ⊂ G0
and G = G0. It follows (see Remark 2.3) that every edge of Γ (A) is admissible. �

For our discussion of the Noetherian property, we discard the assumption that ideals in a graded k-algebra are generated
by homogeneous elements of degrees ≥ 2.

To establish the main theorem of this section in the left Noetherian case, we filter a left ideal by defining a total order on
the path basis of Proposition 2.7. We invoke this total order only when Γ (A) has the property that every vertex lying on an
oriented circuit has out-degree 1. To handle the right Noetherian case, one first defines the analogous total order under the
assumption that every vertex on an oriented circuit has in-degree 1. In the interest of brevity, we provide details only for
the left Noetherian case. We define the order in several steps.

We first fix a total ordering of the s circuits of Γ (A): C1 < C2 < · · · < Cs. An in-path p for a circuit Ci is an anchored path
p with the final vertex of p on Ci and no other vertex of p on Ci. The set of in-paths to a particular circuit is finite, so we fix
a total ordering on each set of in-paths. Of the maximal paths in Γ (A), finitely many terminate on no circuit. We fix a total
ordering on these paths as well and define them to be less than any in-path.

If p and q are in-paths of lengths n and m for circuits Ci and Cj respectively, we define p < q if n < m or n = m and i < j
or n = m and i = j and p < q in the fixed ordering on in-paths of Ci.

If w is any anchored walk in Γ (A), then there exists a unique path w such that exactly one of the following holds:

• w is an in-path terminating on Ci with iminimal and w extends w or
• w is an in-path terminating on Ci and is a proper prefix of w or
• w is a maximal extension of w terminating on no circuit.

If p and q are anchored walks of lengths n and m respectively, we define εp < εq if n < m or if n = m and p < q.

Theorem 5.2. For a monomial k-algebra A, the Yoneda algebra E(A) is left (resp. right) Noetherian if and only if

(1) every vertex of Γ (A) lying on an oriented circuit has out-degree (resp. in-degree) 1, and
(2) every edge of every oriented circuit is admissible.

Proof. If Γ (A) contains no circuit, E(A) is finite dimensional, hence Noetherian, by Corollary 2.8. Assume Γ (A) contains a
circuit.

First suppose Γ (A) satisfies conditions (1) and (2). Let J be any left ideal of E(A). We claim J is finitely generated.
Order the path basis as described above. For any class ε ∈ E(A), let h(ε) be the largest basis element appearing with

nonzero coefficient when ε is expressed in the path basis. Let F • be the natural filtration on J inherited from the cohomology
grading on E(A). For n > 0 let Ln be the left ideal generated by {h(ε) : ε ∈ F nJ}. Let L =


n Ln.

Conditions (1) and (2) guarantee the existence of a largest integer d such that the final edge in a path p of length d is not
admissible. Then by Corollary 3.4, εq is decomposable for any anchored walk q of length > d. It follows that L/Ld is finitely
generated as a left ideal (if not, one could find anchored walks p and qwith p ⊢ q and εp and εq algebraically independent);
hence the ascending chain of left ideals L1 ⊂ L2 ⊂ · · · stabilizes. The fact that J is finitely generated then follows by the
standard Hilbert Basis argument.

Conversely, let C = c0 · · · cn be a circuit of length n in Γ (A). First suppose vertex ci has out-degree > 1, where 0 ≤ i < n.
Let v ≠ ci+1 be a vertex such that ci → v is an edge in Γ (A). Let p be any anchored path of length m in Γ (A) such that
pm = cn−1. For ℓ ≥ 0, define qℓ = pCℓc0 · · · civ where Cℓ indicates the circuit C is traversed ℓ times. Let J be the left ideal of
E(A) generated by {εqℓ

: ℓ ≥ 0}. We claim that J is not finitely generated.
If J is finitely generated, there exists L > 0 such that εqℓ

is in the left ideal generated by εq0 , . . . , εqL for all ℓ > L. Fix
ℓ0 > L. Then by Proposition 2.7 and Corollary 3.4, there exists a walk w and an index 0 ≤ d ≤ L such that εqℓ

= εw ⋆ εqd
and qℓ ∼ qdw. Since v ≠ ci+1 and since pCdc0 · · · ci is a prefix of qℓ, Lemma 2.10(2) implies qd is an even-length walk. But
by Lemma 2.10(3) and (4), w0 ⊗ v = ci+2 ⊗ ci+1 (where, if i = n− 1, ci+2 = c1) and deg(v) = deg(ci+1), implying v = ci+1,
a contradiction. Thus if Γ (A) contains a vertex of out-degree > 1 lying on a circuit, E(A) is not left Noetherian.

Suppose instead that every vertex of C has out-degree 1 and C contains an edge cj → cj+1 which is not admissible.
Let K be the left ideal of E(A) generated by εqi for i ≥ 0 where qi = pC ic0 · · · cj−1 (if j = 0, then since c0 = cn we
take qi = pC ic0 · · · cn−1). Since cjcj+1 is not admissible, and since cj is the only successor of cj−1 in Γ (A), it follows from
Lemma 2.10(1) and Proposition 3.3 that εw ⋆ εqi = 0 for any admissible walk w. Thus K is an infinitely-generated trivial left
ideal and E(A) is not left Noetherian.

We omit the analogous proof for the right Noetherian case. �
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For the algebras A and B of Example 2.2, E(A) and E(B) are neither left nor right Noetherian. Comparing our graph-
theoretic characterizations of GK dimension and the Noetherian property, we have the following immediate corollary.

Corollary 5.3. Let A be a monomial k-algebra. If E(A) is left or right Noetherian, then GKdim E(A) ≤ 1. If E(A) is Noetherian then
Γ (A) consists of finitely many disjoint circuits and paths.

6. Examples

The following example suggests that the GKdim E(A) = ∞ case can be quite complicated; edges that are dense in one
infinite walk need not be dense in another.

Example 6.1. Let S = k⟨w, x, y, z,W , X, Y , Z, p, q⟩ be a free algebra and let I be the ideal generated by

pqwxyz wxyzp xyzpqwx YZpqwx
pqWXYZ WXYZp XYZpqWX yzpqWX .

Let A be the factor algebra A = S/I . The graph Γ (A) has two components and is shown in Fig. 1. Admissible edges are
indicated by solid arrows; dashed arrows are non-admissible edges. Vertex pq is common to two oriented circuits, so
GKdim E(A) = ∞. There are many infinite walks in Γ (A). The walk

p → wxyz → pq → wxyz → pq → · · ·

is anchored and wxyz → pq is dense in this walk since the even-length walk

wxyz → pq → wxyz → pq → wxyz

is equivalent to

z → pqwxy → xyz → pqw → wxyz.

However, the walk

p → wxyz → pq → WXYZ → pq → wxyz → pq → WXYZ → · · ·

contains no dense edge. To see this, observe that the equivalent anchored walks corresponding to odd-length admissible
extensions of wxyz (and likewise ofWXYZ) terminate on the circuit

yz → pqwx → YZ → pqWX → yz.

It follows that no even-length extension ofwxyz → pq is admissible because condition (2) of Lemma2.10 cannot be satisfied.
By Theorem 3.6, E(A) is not finitely generated.

Example 6.2. Let A = k⟨x, y⟩/⟨x3 − x2y, xy2, y3⟩ and observe x4 = 0 in A. The degree–lexicographic ordering onmonomials
in k⟨x, y⟩with x < y yields the associatedmonomial algebra A′

= k⟨x, y⟩/⟨x2y, xy2, y3, x4⟩. Although dim E i(A) ≤ dim E i(A′)
for all i, one can check that equality does not always hold. The graph Γ (A′) is shown below. By Corollary 2.8, we have
GKdim E(A′) = 2. It follows that GKdim E(A) ≤ 2.

x3
(( xii y2oo

		
xy

OO

yoo //

II

x2 ff

Γ (A′)

We leave to the reader the straightforward verification that GKdim E(A) > 1; hence GKdim E(A) = 2 by Bergman’s gap
theorem.

Inmany cases of interest, knowing GKdim E(A′) provides little or no information about GKdim E(A). Consider the algebra

A =
k⟨x, y, z⟩

⟨xy − z2, zx − y2, yz − x2⟩
.

The algebra A is a 3-dimensional Sklyanin algebra; hence GKdim E(A) = 0. Using lexicographic ordering with z > y > x,
the associated monomial algebra of A is

A′
=

k⟨x, y, z⟩
⟨z2, zx, yz, y3, zy2, yxy, yx3, y2x2, zyx2⟩

.

Constructing the CPS graph of A′ reveals GKdim E(A′) = ∞.
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Fig. 1. The graph Γ (A) for Example 6.1.
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