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Abstract. We introduce a class of local Noetherian rings, which we call min-

imal intersections, and show that over such rings there exist classes of modules
for which the derived functors Ext and Tor vanish non-trivially. This gener-

alizes a well-known phenomenon of non-trivial vanishing of Ext and Tor for

modules over complete intersections of codimension at least two.

1. Introduction

Let R be a commutative local Noetherian ring, and M and N finitely generated
R-modules. In many cases the vanishing of all higher Ext and Tor can only occur
in a trivial way. For instance, in [9, 11, 12, 20] it is shown that over hypersurfaces
(which are codimension one complete intersections), Golod rings and Gorenstein
rings of low codimension, the vanishing of all higher TorR

i (M,N) or Exti
R(M,N)

implies that either M has finite projective dimension, or N has finite projective
dimension (or finite injective dimension for Ext vanishing if R is not Gorenstein).
This raises a question of the rarity of non-trivial vanishing of all higher homology
and cohomology over local rings.

The most well-known class of local rings over which the vanishing of all higher Ext
and Tor occurs non-trivially is that of complete intersections of codimension at least
two (see, for example, [14, Theorem 3.1], and [4]). In this paper we isolate a property
of complete intersections which enables non-trivial vanishing, and consider, more
generally, local Noetherian rings having this property:

Definition. Let R = Q/I with Q a regular local ring and I an ideal in the square
of the maximal ideal of Q. We say that R is a minimal intersection (with respect
to Q) if I is the sum of two non-zero ideals I1 and I2 of Q such that I1 ∩ I2 = I1I2.

We prove that there exist classes of modules over a minimal intersection demon-
strating non-trivial vanishing of all higher homology and cohomology. That is, if R
is a minimal intersection then there exist classes of finitely generated R-modules M
and N of infinite projective dimension over R, and (not necessarily finitely gener-
ated) R-modules L of infinite injective dimension over R, such that TorR

i (M,N) = 0
for all i � 0, and Exti

R(M,L) = 0 for all i � 0. Outside of the special case of both
Q/I1 and Q/I2 having only finitely many non-isomorphic indecomposable syzygy
(or cosyzygy) modules, these classes of modules exhibiting non-trivial vanishing are

Date: November 1, 2008.
1991 Mathematics Subject Classification. 13D03.
Key words and phrases. vanishing Ext, vanishing Tor.
The first author was partially supported by NSA Grant Number H98230-07-1-006.

1



2 DAVID A. JORGENSEN AND W. FRANK MOORE

quite large. If we further assume that R is Cohen-Macaulay, then they consist of
finitely generated maximal Cohen-Macaulay modules.

Minimal intersections are a generalization of complete intersections of codimen-
sion two or greater. For if I is generated by a regular sequence f1, . . . , fc with c ≥ 2,
then for 1 ≤ r ≤ c we have (f1, . . . , fr)∩ (fr+1, . . . , fc) = (f1, . . . , fr)(fr+1, . . . , fc).

In Section 2 we give general results for Ext and Tor that are needed in subsequent
sections. We prove in Section 3 properties of minimal intersections which are also
needed in subsequent sections. For instance, we show that the Cohen-Macaulay
and Gorenstein properties are preserved after minimal intersection. Section 4 is
the main part of the paper. We discuss how non-trivial vanishing of Ext and
Tor can occur over complete intersections of codimension at least two, and then
prove the same result assuming only that R is a minimal intersection. We also
show that such non-trivial vanishing over Cohen-Macaulay and Gorenstein minimal
intersections (respectively) behaves similarly to that over complete intersections.
The final Section 5 gives several examples, and a sufficient condition for detecting
modules in the classes exhibiting non-trivial vanishing. This sufficient condition
looks at the form of the free resolution of the module, and is aptly implemented on
the computer. We do this using the computer algebra package Macaulay 2 .

2. General Results on Ext and Tor

In this section we give some preliminary results involving Ext and Tor.
We make major use of the following standard result (see, for example, [19, 11.51]).

2.1. Suppose that A is a commutative ring, J an ideal of A, and set B = A/J .

(1) If X is an A-module such that TorA
i (X, B) = 0 for all i ≥ 1, then for any

B-module Y we have

TorA
i (X, Y ) ∼= TorB

i (X ⊗A B, Y ) for all i,

and

Exti
A(X, Y ) ∼= Exti

B(X ⊗A B, Y ) for all i.

(2) If Y is an A-module such that Exti
A(B, Y ) = 0 for all i ≥ 1, then for any

B-module X we have

Exti
A(X, Y ) ∼= Exti

B(X, HomA(B, Y )) for all i.

The following formula from [12, 2.2] is instrumental to the proofs in the subse-
quent sections.

2.2. Let X and Y be finitely generated modules over a local Noetherian ring A
with pdA X < ∞. Then

sup{i | TorA
i (X, Y ) 6= 0} = sup{depthAp

Ap − depthAp
Xp − depthAp

Yp},

where the second sup is taken over all p ∈ Spec A.

Proposition 2.3. Let A be a Gorenstein local ring, B = A/J such that pdA B <
∞, and X be a maximal Cohen-Macaulay A-module. Then we have

HomA(X, A)⊗A B ∼= HomB(X ⊗A B,B)
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Proof. Hom-tensor adjointness gives HomB(X ⊗A B,B) ∼= HomA(X, B), therefore
it suffices to exhibit an isomorphism HomA(X, A) ⊗A B ∼= HomA(X, B). This
isomorphism is easily seen when X is a free A-module. In general, let G → F →
X → 0 be an A-free presentation of X. On the one hand we apply HomA(−, B),
and on the other hand we apply HomA(−, A) first then − ⊗A B. The result is a
commutative diagram:

0 // HomA(X, B) // HomA(F,B) //

∼=
��

HomA(G, B)

∼=
��

0 // HomA(X, A)⊗A B // HomA(F,A)⊗A B // HomA(G, A)⊗A B

We just need to know that the bottom row is exact to establish the proposition.
For this, consider the short exact sequences 0 → Ω → F → X → 0, and 0 →
Ω′ → G → Ω → 0. Applying HomA(−, A), and using the fact that Ext1A(X, A) =
Ext1A(Ω, A) = 0 (since X and Ω are maximal Cohen-Macaulay A-modules), we get
the short exact sequences 0 → HomA(X, A) → HomA(F,A) → HomA(Ω, A) → 0
and 0 → HomA(Ω, A) → HomA(G, A) → HomA(Ω′, A) → 0. Now applying −⊗A B
we obtain

TorA
1 (HomA(Ω, A), B) → HomA(X, A)⊗A B →

HomA(F,A)⊗A B → HomA(Ω, A)⊗A B → 0

and

TorA
1 (HomA(Ω′, A), B) → HomA(Ω, A)⊗A B →

HomA(G, A)⊗A B → HomA(Ω′, A)⊗A B → 0.

Since HomA(Ω, A) and HomA(Ω′, A) are maximal Cohen-Macaulay A-modules and
pdA B < ∞, 2.2 shows that TorA

i (HomA(Ω, A), B) = TorA
i (HomA(Ω′, A), B) = 0

for all i > 0, and so we have short exact sequences

0 → HomA(X, A)⊗A B → HomA(F,A)⊗A B → HomA(Ω, A)⊗A B → 0

and

0 → HomA(Ω, A)⊗A B → HomA(G, A)⊗A B → HomA(Ω′, A)⊗A B → 0.

Splicing these together, we see that the bottom row of the diagram above is exact.
�

Proposition 2.4. Assume that A is a Cohen-Macaulay local ring with canonical
module ω. Let (−)∨ denote the dual HomA(−, ω). Let X and Y be finitely generated
A-modules, with Y maximal Cohen-Macaulay. Then Exti

A(X, Y ) = 0 for all i � 0
if and only if TorA

i (X, Y ∨) = 0 for all i � 0.
If X is moreover maximal Cohen-Macaulay, then the following are equivalent:
(1) Exti

A(X, Y ) = 0 for all i ≥ 1;
(2) TorA

i (X, Y ∨) = 0 for all i ≥ 1, and X ⊗A Y ∨ is maximal Cohen-Macaulay.

Proof. That (1) and (2) are equivalent is proven in [16, 2.7]. To prove the “if”
direction of the first statement, choose a sufficiently high syzygy module Ωn(X) of
X such that TorA

i (Ωn(X), Y ∨) = 0 for all i ≥ 1. This yields short exact sequences

0 → Ωn+i(X)⊗A Y ∨ → Fn+i−1 ⊗A Y ∨ → Ωn+i−1(X)⊗A Y ∨ → 0
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for all i ≥ 1, derived from a minimal free resolution

· · · → Fn → · · · → F1 → F0 → X → 0

of X. Since Fn+i−1⊗A Y ∨ are maximal Cohen-Macaulay for all i, counting depths
along these short exact sequences shows that Ωn+i(X)⊗A Y ∨ are maximal Cohen-
Macaulay for all i ≥ d = dim A. Thus we have TorA

i (Ωn+d(X), Y ∨) = 0 for all
i ≥ 1, and Ωn+d(X)⊗A Y ∨ is maximal Cohen-Macaulay. By the second part of the
theorem, Exti

A(Ωn+d(X), Y ) = 0 for all i ≥ 1, and so Exti
A(X, Y ) = 0 for all i � 0.

The “only if” direction of the first statement also uses the second part of the
theorem, and is easier. �

3. Minimal Intersections

Throughout this section we assume that Q is a regular local ring, and R =
Q/(I1 + I2) with I1 and I2 nonzero ideals contained in the square of the maximal
ideal of Q, and we set R1 = Q/I1 and R2 = Q/I2. We start with some basic facts.

3.1. The ring R is a minimal intersection if and only if TorQ
i (R1, R2) = 0 for all

i ≥ 1. Indeed, it is standard that TorQ
1 (R1, R2) = 0 if and only if I1 ∩ I2 = I1I2

(see for example [19]). The statement follows now from rigidity of Tor for regular
local rings [1, 18].

Lemma 3.2. Assume that R is a minimal intersection. Then
(1) pdQ R = pdQ R1 + pdQ R2;
(2) depthQ Q + depthQ R = depthQ R1 + depthQ R2.

Proof. The first statement follows by noting that if F and G are minimal free
resolutions of R1 and R2 over Q, then F⊗Q G is a minimal free resolution of
R ∼= R1 ⊗Q R2 over Q, by 3.1, and this resolution is of length pdQ R1 + pdQ R2.
Statement (2) follows from Statement (1) and the Auslander-Buchsbaum formula:

depthQ Q + depthQ R =depthQ Q + (depthQ Q− pdQ R)

=depthQ Q + (depthQ Q− (pdQ R1 + pdQ R2))

=(depthQ Q− pdQ R1) + (depthQ Q− pdQ R2)
=depthQ R1 + depthQ R2.

�

The following result discusses Cohen-Macaulay and Gorenstein minimal inter-
sections.

Proposition 3.3. With the notation above, we have:
(1) R is Cohen-Macaulay if and only if both R1 and R2 are Cohen-Macaulay.

When this is the case, height(I1 + I2) = height I1 + height I2.
(2) R is Gorenstein if and only if both R1 and R2 are Gorenstein.
(3) R is a complete intersection if and only if both R1 and R2 are complete

intersections.

Proof. The “if” direction of (1) is given in [8, Lemma 1.10]. For the “only if”
direction we use the the Intersection Theorem of Peskine-Szpiro and Roberts, which
implies the inequality

dim Q + dim R ≥ dim R1 + depthR2.
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(See [5, Corollary 9.4.6].) Therefore by Lemma 3.2(2)

depth R1 + depth R2 =depthQ Q + depthQ R

=dim Q + dim R

≥dim R1 + depthR2.

Thus depthR1 ≥ dim R1 and so R1 is Cohen-Macaulay. By symmetry, so is R2.
To prove the second statement of (1), the statement of Lemma 3.2(2) gives

height I =dim Q− dim R

=depthQ Q− depthQ R

=depthQ Q− (depthQ R1 + depthQ R2 − depthQ Q)

=(depthQ Q− depthQ R1) + (depthQ Q− depthQ R2)

=(dim Q− dim R1) + (dim Q− dim R2)
=height I1 + height I2.

To prove (2) it suffices by (1) to show only that

Ext
pdQ R1+pdQ R2

Q (R,Q) ∼= R

if and only if both

Ext
pdQ R1

Q (R1, Q) ∼= R1 and Ext
pdQ R2

Q (R2, Q) ∼= R2,

assuming R is Cohen-Macaulay. Let F and G be (deleted) minimal Q-free resolu-
tions of R1 and R2, respectively. By the vanishing of TorQ

i (R1, R2) = 0 for all i ≥ 1,
a minimal Q-free resolution of R is given by F⊗Q G. Let (−)∗ denote the dual
HomQ(−, Q). Since R1 and R2 are Cohen-Macaulay, both F∗ and G∗ are complexes
with homology Ext

pdQ R1

Q (R1, Q) and Ext
pdQ R2

Q (R2, Q), respectively, and since R

is Cohen-Macaulay, (F⊗Q G)∗ is a complex with homology Ext
pdQ R

Q (R,Q). From
the natural isomorphism of complexes (F⊗Q G)∗ ∼= F∗⊗Q G∗ it follows that

Ext
pdQ R1+pdQ R2

Q (R,Q) ∼= Ext
pdQ R1

Q (R1, Q)⊗Q Ext
pdQ R2

Q (R2, Q).

Now it is clear that R is Gorenstein if R1 and R2 are Gorenstein. For the converse,
one concludes that if Ext

pdQ R1+pdQ R2

Q (R,Q) ∼= R, then Ext
pdQ R1

Q (R1, Q) ∼= Q/I ′1

and Ext
pdQ R2

Q (R2, Q) ∼= Q/I ′2 for ideals I ′1 and I ′2 of Q satisfying I1 ⊆ I ′1 and
I2 ⊆ I ′2. Dualizing F∗ and G∗ back to F and G shows the reverse inclusions of
ideals, yielding I1 = I ′1 and I2 = I ′2.

Statement (3) follows easily from (1) and the fact that µQ(I) = µQ(I1)+µQ(I2),
where µQ(J) denotes the minimal number of generators of an ideal J of Q. �

Theorem 3.4. With the notations above, the following are equivalent:
(1) R is a minimal intersection.
(2) Rp is a minimal intersection for all prime ideals p of Q.
(3) For all primes p of Q,

depthQp
Qp + depthQp

Rp = depthQp
(R1)p + depthQp

(R2)p

If R1 and R1 are Cohen-Macaulay, then (1)–(3) are equivalent to
(4) Rp is a proper intersection for all primes p of Q.
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Recall that R is a called a proper intersection if dim R = dim R1+dim R2−dim Q.
Thus, in the Cohen-Macaulay case, part (4) of the theorem says that minimal
intersections are proper intersections in a strong sense.

Proof. Suppose that R is a minimal intersection. We have R = Q/(I1 + I2) with
Q a regular local ring, and I1I2 = I1 ∩ I2. Let p be a prime ideal of Q. Then
Rp = Qp/((I1)p + (I2)p) with Qp a regular local ring. Thus Rp is a minimal
intersection if and only if (I1)p(I2)p = (I1)p ∩ (I2)p, but this follows easily from the
fact that I1I2 = I1 ∩ I2.

That (2) implies (3) is simply Lemma 3.2(2).
To show that (3) implies (1) we use 2.2 and 3.1:

sup{i | TorQ
i (R1, R2) 6= 0} =sup{depthQp

Qp − depthQp
(R1)p − depthQp

(R2)p}
=sup{−depthQp

Rp} = 0.

The equivalence of (4) is clear, using Proposition 3.3. �

It is useful to have a criteria for when a local ring is a minimal intersection. Recall
that if X is a module over a local ring A with residue field κ, then the Poincaré
series of X over A is the formal power series PA

X(t) =
∑

i≥0 dimκ TorA
i (X, κ)ti.

Proposition 3.5. The local ring R = Q/(I1 + I2) is a minimal intersection (with

respect to Q) only if
d PQ

R

dt
(−1) = 0.

Proof. Since Q is a regular local ring, PQ
R1

(t) and PQ
R2

(t) are polynomials in t,
and since R1 and R2 are Q-modules of rank zero, we have PQ

R1
(−1) = 0 and

PQ
R2

(−1) = 0. Now 3.1 shows that PQ
R(t) = PQ

R1
(t) PQ

R2
(t). Thus PQ

R(t) has −1 as a
double root. �

Remark. The converse of Proposition 3.5 does not hold. Indeed, the Poincaré
series over Q = k[[x, y]] of the local ring R = k[[x, y]]/(x2, xy) has −1 as a double
root, yet R is not a minimal intersection with respect to Q.

4. Vanishing over Minimal Intersections

This section contains the main results on non-trivial vanishing of Ext and Tor
for modules over minimal intersections. The phenomenon of non-trivial vanishing is
patterned on what happens over complete intersections, so we first briefly describe
how non-trivial vanishing can occur in this case.

Vanishing over Complete Intersections. We first recall the following remark-
able theorem of Avramov and Buchweitz [4], which makes use of support varieties,
and which are reviewed below:

4.1. ([4]) Let M and N be finitely generated modules over a complete intersection
R. Then the following are equivalent.

(1) TorR
i (M,N) = 0 for all i � 0;

(2) Exti
R(M,N) = 0 for all i � 0;

(3) Exti
R(N,M) = 0 for all i � 0;

(4) V(M) ∩V(N) = {0}.
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Thus non-trivial vanishing occurs over complete intersections precisely when
M and N are finitely generated modules, both of infinite projective dimension,
such that V(M) ∩ V(N) = {0}. We now describe a situation in which this trivial
intersection of support varieties holds:

Proposition 4.2. Let Q be a regular local ring, and R = Q/(f1, . . . , fc) a compete
intersection of codimension c ≥ 2. For 1 ≤ r ≤ c, let R1 = Q/(f1, . . . , fr) and
R2 = Q/(fr+1, . . . , fc). Suppose that M ′ is a maximal Cohen-Macaulay module over
R1 and that N ′ is a maximal Cohen-Macaulay module over R2. For M = M ′⊗R1 R
and N = N ′ ⊗R2 R we have

(1) V(M) ∩V(N) = {0}
(2) pdR1

M ′ = pdR M , and pdR2
N ′ = pdR N .

Thus non-trivial vanishing occurs whenever M ′ and N ′ are chosen to have infinite
projective dimension over R1 and R2, respectively.

We briefly recall the definition of support variety (cf. [2]). Let R be a complete
intersection. We can without loss of generality assume that the residue field k of R
is algebraically closed. For any finitely generated R-module M , the sequence of Ext
modules ExtR(M,k) has the structure of finitely generated graded module over the
polynomial ring R = k[χ1, . . . , χc] of cohomology operators. Thus annRExtR(M,k)
is a homogeneous ideal of R, and we define the support variety of M , V(M), to be
the cone in c-dimensional affine space over k defined by annRExtR(M,k).

Proof. The proof is really that of [14, 3.1]: by construction, M lifts to M ′, and
the proof of [14, 3.1] gives (χr+1, . . . , χc) ⊆ annRExtR(M,k). Thus we have
V ((χr+1, . . . , χc)) ⊇ V(M). Similarly, V ((χ1, . . . , χr)) ⊇ V(N), and so

V(M) ∩V(N) ⊆ V ((χ1, . . . , χr)) ∩V ((χr+1, . . . , χc)) = {0}.
�

There are two other relevant properties of vanishing Ext and Tor which hold
over complete intersections. Both are well-known, and the first is referred to as the
uniform Auslander condition in [17]. See [3, 4.2] and [13, 2.2] for the proofs.

4.3. Let M and N be finitely generated modules over a complete intersection R.
Then

(1) Exti
R(M,N) = 0 for all i � 0 if and only if Exti

R(M,N) = 0 for all
i > min{depth R− depth M,depth R− depth N}.

(2) TorR
i (M,N) = 0 for all i � 0 if and only if TorR

i (M,N) = 0 for all
i > min{depth R− depth M,depth R− depth N}.

The second relevant property is a special case of what is proved in [4, 5.6]. Below
we let (−)∗ denote the dual HomR(−, R).

4.4. Let M and N be finitely generated modules over a complete intersection R.
Then

(1) Exti
R(M,N) = 0 for all i � 0 if and only if Exti

R(M,N∗) = 0 for all i � 0.
(2) TorR

i (M,N) = 0 for all i � 0 if and only if TorR
i (M,N∗) = 0 for all i � 0.

We can generalize these aspects of non-trivial vanishing to minimal intersections.
The trade-off to considering a class of rings much more general than the complete
intersections is that we establish non-trivial vanishing for specific classes of modules
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— those consisting of modules as described in Proposition 4.2. We remark that
Proposition 4.2 does not describe the only way in which non-trivial vanishing can
occur over complete intersections. See Example 5.2 below.

Vanishing over Arbitrary Minimal Intersections. We assume now that R =
Q/(I1 + I2) is a minimal intersection with Q a regular local ring, and R1 = Q/I1

and R2 = Q/I2. The following theorem is the main result of the paper.

Theorem 4.5. Let R be a minimal intersection, M ′ any sufficiently high syzygy
module over R1 of a finitely generated R1-module, and N ′ any sufficiently high
syzygy module over R2 of a finitely generated R2-module. Let L′ any sufficiently
high cosyzygy module over R2 of a finitely generated R2-module. Then for M =
M ′ ⊗R1 R, N = N ′ ⊗R2 R, and L = HomQ(R1, L

′) the following hold:

(1) TorR
i (M,N) = 0 for all i > dim Q;

(2) Exti
R(M,L) = 0 for all i > dim Q;

(3) pdR M = pdR1
M ′, pdR N = pdR2

N ′, idR L = idR2 L′.

Proof. Let N ′′ be any finitely generated R2-module. Since Q is a regular local ring
we have TorQ

i (R1, N
′′) = 0 for all i � 0. Take an exact sequence 0 → N ′ → Rb

2 →
N ′′ → 0. Then from the derived long exact sequence of Tor

· · · → TorQ
i (R1, N

′) → TorQ
i (R1, R

b
2) → TorQ

i (R1, N
′′) → · · · ,

and the fact that TorQ
i (R1, R2) = 0 for all i ≥ 1, we have the isomorphisms

TorQ
i+1(R1, N

′′) ∼= TorQ
i (R1, N

′) for all i ≥ 1. Thus if N ′ is a sufficiently high
syzygy over R2, we may assume that

(4.5.1) TorQ
i (R1, N

′) = 0 for all i ≥ 1.

Applying 2.1(1) we get the isomorphisms

TorQ
i (M ′, N ′) ∼= TorR1

i (M ′, N ′ ⊗Q R1) = TorR1
i (M ′, N)

for all i. Note that TorQ
i (R1, R2) = 0 for all i ≥ 1 implies that a minimal free

resolution of R over R1 is attained by tensoring a minimal free resolution of R2

over Q with R1. Thus R has finite projective dimension over R1. By choosing a
sufficiently high syzygy M ′ over R1 we can assume that

(4.5.2) TorR1
i (M ′, R) = 0 for all i ≥ 1.

By 2.1(1) we have the isomorphisms

TorR1
i (M ′, N) ∼= TorR

i (M ′ ⊗R1 R,N) = TorR
i (M,N)

for all i. Thus TorR
i (M,N) = 0 for all i > dim Q, and this establishes the claim

about the vanishing of homology.
To see the statements regarding the projective dimensions of M and N , note that

by (4.5.2) a minimal free resolution of M over R is obtained by tensoring a minimal
free resolution of M ′ over R1 with R. Thus pdR M = pdR1

M ′. By symmetry we
have pdR N = pdR2

N ′.
For (2), let L′′ be an R2-module. Since Q is a regular local ring, Exti

Q(R1, L
′′) =

0 for all i � 0. Let 0 → L′′ → I → L′ → 0 be an exact sequence of R2-modules
with I injective. Then I is a direct sum of injective hulls ER2(R2/p) of quotients
R2/p with p a prime ideal of R2. If P is a prime ideal of Q which is a preimage of
p, then ER2(R2/p) = HomQ(R2, EQ(Q/P )), where EQ(Q/P ) is the injective hull
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of Q/P . Thus we can write I = HomQ(R2,J ) where J is an injective Q-module.
We have the isomorphisms Exti

Q(R1,HomQ(R2,J )) ∼= HomQ(TorQ
i (R1, R2),J ) for

all i (see, for example, [19, page 360]). Therefore we have Exti
Q(R1, I) = 0 for all

i ≥ 1, and so from the long exact sequence of Ext

· · · → Exti
Q(R1, L

′′) → Exti
Q(R1, I) → Exti

Q(R1, L
′) → · · · .

we get
Exti

Q(R1, L
′) ∼= Exti+1

Q (R1, L
′′)

for all i ≥ 1. Now it is clear that we can replace L′′ by an R2-module L′ such that

(4.5.3) Exti
Q(R1, L

′) = 0 for all i ≥ 1.

By 2.1(2) we have the isomorphisms

Exti
Q(M ′, L′) ∼= Exti

R1
(M ′,HomQ(R1, L

′)) = Exti
R1

(M ′, L)

for all i. As in the part of the proof for (1) above, we can choose a finitely generated
R1-module M ′ such that TorR1

i (M ′, R) = 0 for all i ≥ 1, which by 2.1(1) gives

Exti
R1

(M ′, L) ∼= Exti
R(M ′ ⊗R1 R,L) = Exti

R(M,L)

for all i. Therefore we have Exti
R(M,L) = 0 for all i > dim Q.

To finish the proof we just need to justify that idR L = idR2 L′. By 3.1,
TorQ

i (R1, R2) = 0 for all i ≥ 1. Then 2.1(1) shows that Exti
Q(R1, L

′) ∼= Exti
R2

(R,L′)
for all i, in particular, L ∼= HomR2(R,L′). Then by (4.5.3) we have Exti

R2
(R,L′) =

0 for all i ≥ 1. Thus a minimal injective resolution of L over R is obtained by
applying HomR2(R,−) to a minimal injective resolution of L′ over R2, and so
idR L = idR2 L′. �

Over Cohen-Macaulay minimal intersections we can establish non-trivial vanish-
ing of Tor for a larger class of modules, and non-trivial vanishing of Ext for pairs
of finitely generated modules. Indeed, over a Cohen-Macaulay ring a higher syzygy
module is maximal Cohen-Macaulay, but a maximal Cohen-Macaulay module need
not be a higher syzygy module.

Note that for the classes of modules identified in the following corollary, Property
4.3 holds.

Recall from 3.3 that R is Cohen-Macaulay if and only if both R1 and R2 are
Cohen-Macaulay. We let (−)∨ denote the dual HomR(−, ω), were ω is the canonical
module of R.

Corollary 4.6. Let R be a Cohen-Macaulay minimal intersection. Suppose that M ′

is a maximal Cohen-Macaulay R1-module, and N ′ is a maximal Cohen-Macaulay
R2-module. Then for M = M ′ ⊗R1 R and N = N ′ ⊗R2 R we have

(1) M , N , and M ⊗R N are maximal Cohen-Macaulay R-modules;
(2) TorR

i (M,N) = 0 for all i ≥ 1;
(3) Exti

R(M,N∨) = 0 for all i ≥ 1;
(4) pdR M = ∞ if and only if M ′ is not free; pdR N = ∞ if and only if N ′ is

not free if and only if idR N∨ = ∞.

Proof. (1). From Theorem 3.4 we have that

depthQp
Qp − depthQp

(R1)p − depthQp
(R2)p = −depthQp

Rp ≤ 0
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for all primes p of Q. Since M ′ is a maximal Cohen-Macaulay R1-module and
N ′ is a maximal Cohen-Macaulay R2-module, depthQp

(R1)p = depthQp
M ′

p and
depthQp

(R2)p = depthQp
N ′

p for all primes p of Q. Thus for all primes p of Q,

depthQp
Qp − depthQp

M ′
p − depthQp

N ′
p =

depthQp
Qp − depthQp

(R1)p − depthQp
(R2)p ≤ 0

Thus by 2.2 we obtain

(4.6.1) TorQ
i (M ′, N ′) = 0 for all i ≥ 1.

It follows that pdQ(M ′⊗QN ′) = pdQ M ′+pdQ N ′. Now the Auslander-Buchsbaum
formula gives the equation

depthQ Q + depthQ(M ′ ⊗Q N ′) = depthQ M ′ + depthQ N ′

Using the fact that M ′ and N ′ are maximal Cohen-Macaulay, and comparing with
depthQ Q + depthQ R = depthQ R1 + depthQ R2 from 3.2, we see that depthQ R =
depthQ(M ⊗Q N), and this is the same as depthR R = depthR(M ⊗R N).

The same proof shows that M and N are both maximal Cohen-Macaulay, just
by replacing N ′ by R2, and M ′ by R1, respectively.

(2). Following the proof of Theorem 4.5(1), and in light of (4.6.1), we just need
to show that (4.5.1) and (4.5.2) hold. As in the argument for part (1), we have
TorQ

i (R1, N
′) = 0 for all i ≥ 1, which is (4.5.1). Similarly, TorQ

i (M ′, R2) = 0 for
all i ≥ 1, and since TorQ

i (R1, R2) = 0 for all i ≥ 1, 2.1(1) implies we also have
TorR1

i (M ′, R) = 0 for all i ≥ 1, which is (4.5.2).
Property (3) follows from (1), (2), and Proposition 2.4.
By Theorem 4.5(3,4) the only part of (4) we need to show is the last statement.

We have N ′ is free over R2 if and only if TorR
i (k,N) = 0 for all i � 0 if and only if

(by Proposition 2.4) Exti
R(k,N∨) = 0 for all i � 0 if and only if idR N∨ < ∞. �

Remark. The plentitude of modules involved in non-trivial vanishing according
to Corollary 4.6 thus depends on the number of non-isomorphic indecomposable
maximal Cohen-Macaulay modules over R1 and R2. Much work has been done on
the classification of Cohen-Macaulay rings having only finitely many isomorphism
classes of indecomposable maximal Cohen-Macaulay modules, the so-called rings
of finite Cohen-Macaulay type. See [21] for a survey of the subject. In particular,
a Cohen-Macaulay ring of finite Cohen-Macaulay type has at most an isolated
singularity [10]. Outside of this case, the literature suggests that the number of
non-isomorphic indecomposable maximal Cohen-Macaulay modules over a Cohen-
Macaulay ring is quite large (see, for example, [6]).

A stronger analogy to vanishing over complete intersections is attained when we
assume that R is Gorenstein: Properties (4) and (5) below mimic 4.4, and (6) that
of 4.1(3).

Recall by Proposition 3.3 that R is Gorenstein if and only if both R1 and R2 are
Gorenstein. Below we let (−)∗ denote the dual HomR(−, R).

Corollary 4.7. Let R be a Gorenstein minimal intersection. Suppose that M ′

is a maximal Cohen-Macaulay R1-module, and N ′ is a maximal Cohen-Macaulay
R2-module. Then for M = M ′ ⊗R1 R and N = N ′ ⊗R2 R we have

(1) M , N , and M ⊗R N are maximal Cohen-Macaulay R-modules;
(2) TorR

i (M,N) = 0 for all i ≥ 1;
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(3) Exti
R(M,N∗) = 0 for all i ≥ 1;

(4) TorR
i (M,N∗) = 0 for all i ≥ 1;

(5) Exti
R(M,N) = 0 for all i ≥ 1;

(6) Exti
R(N,M) = 0 for all i ≥ 1;

(7) pdR M = ∞ if and only if M ′ is not free, and pdR N∗ = ∞ if and only if
N ′ is not free.

Proof. Properties (1)-(3) and (7) are handled by Corollary 4.6. For (4), (5), and
(6) it suffices to show that N∗ ∼= HomR2(N

′, R2) ⊗R2 R. But this is exactly the
statement of Proposition 2.3. �

5. Examples and a Sufficient Condition

The following is an example illustrating that non-trivial vanishing can occur over
rings which are not minimal intersections.

Example 5.1. Let Q = k[[W,X, Y, Z]] where k is a field, and

R = Q/(W 2, X2, Z2, XY, WX + XZ, WY + Y Z, Y 2 −WZ).

Then one may check that R is a zero-dimensional local ring with PQ
R(t) = 1 + 7t +

13t2+10t3+3t4. According to Proposition 3.5, R is not a minimal intersection with
respect to Q. Let w denote the image of W in R, etc. Consider the finitely generated
R-modules M = coker ϕ, where ϕ is represented with respect to the standard basis

of R2 by the matrix
(

w x
y z

)
, and N = R Then we have Exti

R(M,N) = 0 for all

i > 0. Moreover, pdR M = ∞, and idR N = ∞.

The following example shows that Proposition 4.2 does not describe the only
way non-trivial vanishing occurs over complete intersections. The details of the
example are proven in [15].

Example 5.2. Let Q = k[[V,W,X, Y, Z]], with k a field, and R = Q/(V W, XY ).
Then R is a codimension two complete intersection. Let v denote the image of V
in R, etc., and M be the cokernel of the map ϕ : R8 → R8 represented with respect
to the standard basis of R8 by the matrix

−v 0 0 −z 0 0 0 y
−w 0 −z 0 0 0 y 0
0 0 v −w 0 y 0 0
0 0 0 w y 0 0 0
0 −w 0 x 0 0 0 0
0 −w x 0 0 0 0 0
0 y 0 0 0 0 0 0
x z 0 0 0 0 0 0


For N = R/(v), we have TorR

i (M,N) = 0 for all i ≥ 1. Moreover, M is not
of the form described in Proposition 4.2. That is, for no minimal generator f of
(V W, XY ) is there a maximal Cohen-Macaulay R1 = Q/(f)-module M ′ such that
M ∼= M ′ ⊗R1 R.
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A Sufficient Condition. Let R = Q/(I1 + I2) be a minimal intersection with
Q a regular local ring, and R1 = Q/I1, R2 = Q/I2. In this section we discuss a
sufficient condition for determining whether a finitely generated R-module M has
a syzygy over R of the form M ′⊗R1 R for some R1-module M ′ of infinite projective
dimension over R1 satisfying TorR1

i (M ′, R) = 0 for all i ≥ 1, and hence of the form
identified in Theorem 4.5.

Let
F : · · · → F2

∂2−→ F1
∂1−→ F0 → M → 0

be a minimal R-free resolution of M . Choose a sequence of free Q-modules F̃i and
maps ∂̃i between them

F̃ : · · · → F̃2

e∂2−→ F̃1

e∂1−→ F̃0 → 0

such that F and F̃⊗Q R are isomorphic complexes. It is useful to think of the maps
∂i as being given by matrices over R (with respect to some fixed bases of the Fi),
in which case the maps ∂̃i may be thought of as matrices of preimages in Q of the
entries of the matrices representing the ∂i. Since F is a complex of R-modules we
have ∂̃i−1∂̃i ≡ 0 modulo I1 + I2, in other words (∂̃i−1⊗Q R)(∂̃i⊗Q R) = 0. For the
sufficient condition given below we will be considering the sequences of maps

(5.2.1) F̃i ⊗Q Rj

e∂i⊗Rj−−−−→ F̃i−1 ⊗Q Rj

e∂i−1⊗Rj−−−−−−→ F̃i−2 ⊗Q Rj

For j = 1, 2 and i ≥ 2.

Proposition 5.3. Let M be a finitely generated R-module of infinite projective
dimension over R, and suppose (F̃, ∂̃) is some lifting to Q of a minimal R-free
resolution (F, ∂) of M . If the sequence of maps (5.2.1) forms an exact sequence for
some i ≥ 2, then M has a syzygy over R of the form M ′ ⊗Q Rj where M ′ is an
Rj module satisfying TorRj

l (M ′, R) = 0 for all l ≥ 1, and hence M participates in
a non-trivial vanishing of all higher Tor.

Proof. Without loss of generality assume that j = 1, and that (5.2.1) forms an
exact sequence for fixed i ≥ 2. Let M ′

i−2 := coker(∂̃i−1 ⊗R1). Then

F̃i ⊗Q R1

e∂i⊗R1−−−−→ F̃i−1 ⊗Q R1

e∂i−1⊗R1−−−−−−→ F̃i−2 ⊗Q R1 → M ′
i−2 → 0

is the beginning of an R1-free resolution of M ′
i−2. Tensoring this complex with R

we get Fi
∂i−→ Fi−1

∂i−1−→ Fi−2, which is exact. This means that TorR1
1 (M ′

i−2, R) =
0. Since TorQ

i (R1, R2) = 0 for all i ≥ 1, by 2.1(1) we have TorR1
l (M ′

i−2, R) ∼=
TorQ

l (M ′
i−2, R2) for all l ≥ 1. Therefore, by rigidity of Tor for regular local rings,

TorR1
l (M ′

i−2, R) = 0 for all l ≥ 1. This finishes the proof, since M ′
i−2 ⊗R1 R ∼=

coker ∂i−1 is a syzygy of M over R. �

Remark. Suppose j = 1. If I2 happens to be generated by a Q-regular sequence,
then we a priori only need to know that the sequence of maps in (5.2.1) with j = 1
forms a complex in order to invoke the conclusion of Proposition 5.3. For if (5.2.1)
forms a complex with j = 1, and I2 is generated by a Q-regular sequence, then this
sequence is also regular on R1, and by working our way inductively from R up to
R1, Nakayama’s lemma yields that (5.2.1) is exact.
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Next we give examples using Macaulay 2 which illustrate Proposition 5.3. We
first discuss a few details of the liftings (F̃, ∂̃), and define special maps based on
the notion of Eisenbud operators, which were developed in [7] for finitely generated
modules over a complete intersection.

Fix a minimal generating set f1, . . . , fc of I1 + I2 such that I1 is generated by
f1, . . . , fr and I2 generated by fr+1, . . . , fc. (By our assumption that I1 and I2 are
non-zero, we have 1 ≤ r ≤ c−1.) Since the products ∂̃i−1∂̃i are zero modulo I1+I2,
we may express them in terms of the fj : write

(5.3.1) ∂̃i−1∂̃i =
c∑

j=1

fj t̃i,j ,

where the t̃i,j are maps t̃i,j : F̃i → F̃i−2. Note that these maps are not uniquely
defined. They depend first on the resolution F, then on the lifting (F̃, ∂̃), and then
on the choice of the expression in (5.3.1).

In investigating when the sequence (5.2.1)

F̃i ⊗Q Rj

e∂i⊗Rj−−−−→ F̃i−1 ⊗Q Rj

e∂i−1⊗Rj−−−−−−→ F̃i−2 ⊗Q Rj

is exact, we proceed in two steps. First we need to know when it forms a complex.
For j = 1 this is implied by the condition

(5.3.2) t̃i,r+1 ⊗R1 = · · · = t̃i,c ⊗R1 = 0,

and for j = 2 the condition

(5.3.3) t̃i,1 ⊗R2 = · · · = t̃i,r ⊗R2 = 0.

Once we know conditions (5.3.2) or (5.3.3) hold, we compute the homology of
the corresponding complex (5.2.1) to see that it is zero.

In the following examples, we perform both steps using Macaulay 2 . For the
first step we use a special script, which can be obtained from the authors, called
getEisoplist which computes the maps t̃ij and stores them as a list of lists called
Eisoplist. Because the internal indexing used by Macaulay 2 starts at 0, the
element Eisoplist#i#j actually represents the map t̃i+2,j+1. The code may also
compute the Eisenbud operators, which are the maps ti,j = t̃i,j ⊗Q R defined in [7]
in the case where R is a complete intersection.

The input for this script is a chain complex and an integer. Presumably, the
chain complex is a free resolution (F, ∂) over R of the module M , and this may be
obtained simply by using the res command in Macaulay 2 . The integer tells the
script up to what degree i the maps t̃i,j should be computed. The lifting (F̃, ∂̃)
of the given resolution (F, ∂) is done in the script using the Macaulay 2 command
lift. Finally, the choice of the t̃i,j defined by expression (5.3.1) is decided in the
script using the //Igb command in Macaulay 2 , where Igb is a Gröbner basis of
the ideal (f1, . . . , fc).

Example 5.4. Let Q = Q[x, y, z] and R = Q/I, where

I := (x2 − yz, xz − y2, z2 − xy, x2 + yz).

Then R is a zero-dimensional minimal intersection, and the R-module M = R/(x+
y + z) participates in non-trivial vanishing of all higher Tor.
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We first load the script getEisoplist, then show that R is in fact an minimal
intersection by testing TorQ

1 (Q/I1, Q/I2) = 0, then exhibit a minimal resolution of
M , showing that it has infinite projective dimension over R.

i1 : load"getEisoplist.m2"
--loaded getEisoplist.m2

i2 : Q = QQ[x,y,z];

i3 : I = ideal(x^2-y*z,x*z-y^2,z^2-x*y,x^2+y*z);

o3 : Ideal of Q

i4 : Tor_1(coker matrix{{x^2-y*z,x*z-y^2,z^2-x*y}},coker matrix{{x^2+y*z}}) == 0

o4 = true

i5 : R = Q/I

o5 = R

o5 : QuotientRing

i6 : M = coker matrix{{x+y+z}}

o6 = cokernel | x+y+z |

1
o6 : R-module, quotient of R

i7 : Mres = res(M,LengthLimit=>6)

1 1 2 4 8 16 32
o7 = R <-- R <-- R <-- R <-- R <-- R <-- R

0 1 2 3 4 5 6

o7 : ChainComplex

Now we compute the maps t̃i,j . What is shown is {t̃2,1, t̃2,2, t̃2,3, t̃2,4}. Notice
that t̃2,4 = 0, and so it is also zero modulo I1.

i8 : MEisoplist = getEisoplist(Mres,2)

o8 = {{{2} | 0 1 |, {2} | -1 0 |, {2} | -1 -1 |, 0}}

o8 : List

The next step is check that the homology of the complex

F̃2 ⊗Q R1

e∂2⊗R1−−−−→ F̃1 ⊗Q R1

e∂1⊗R1−−−−→ F̃0 ⊗Q R1

is zero (although we do not really need this step, by the remark following Proposi-
tion 5.3, since I2 = (x2 + yz) is generated by a regular element). First we need to
define the ring R1.

i9 : use Q

o9 = Q

o9 : PolynomialRing

i10 : R1 = Q/ideal(x^2-y*z,x*z-y^2,z^2-x*y)

o10 = R1
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o10 : QuotientRing

i11 : homology(lift(Mres.dd_1,Q) ** R1,lift(Mres.dd_2,Q) ** R1) == 0

o11 = true

Therefore, by Proposition 5.3, M participates in non-trivial vanishing.
We can build a companion module N for M as per Theorem 4.5, which yield

non-trivial vanishing of all higher TorR
i (M,N). The steps below are: define R2,

resolve the residue field over this ring, take an appropriate syzygy, and tensor this
syzygy down to the ring R.

i12 : use Q;

i13 : R2 = Q/ideal(x^2+y*z)

o13 = R2

o13 : QuotientRing

i14 : Ntres = res coker vars R2

1 3 4 4 4
o14 = R2 <-- R2 <-- R2 <-- R2 <-- R2

0 1 2 3 4

o14 : ChainComplex

i15 : N = (coker lift(Ntres.dd_3,Q)) ** R

o15 = cokernel {2} | x z 0 x |
{2} | -y x 0 -y |
{2} | z 0 x 0 |
{2} | 0 z y x |

4
o15 : R-module, quotient of R

The beginning of a minimal resolution of N over R is given to show that pdR N =
∞. Afterwards we compute {t̃2,1, t̃2,2, t̃2,3, t̃2,4} for N . Note that t̃2,1 = t̃2,2 = t̃2,3 =
0

i16 : Nres = res(N,LengthLimit=>6)

4 4 4 4 4 4 4
o16 = R <-- R <-- R <-- R <-- R <-- R <-- R

0 1 2 3 4 5 6

o16 : ChainComplex

i17 : NEisoplist = getEisoplist(Nres,2)

o17 = {{0, 0, 0, {2} | 1 0 0 1 |}}
{2} | 0 1 0 0 |
{2} | 0 0 1 0 |
{2} | 0 0 0 1 |

o17 : List

Finally, we compute the homology of the corresponding complex to show that it
is zero. We also show that indeed the first several TorR

i (M,N) are zero.
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i18 : homology(lift(Nres.dd_1,Q) ** R2,lift(Nres.dd_2,Q) ** R2) == 0

o18 = true

i19 : Tor_1(M,N)==0,Tor_2(M,N)==0,Tor_3(M,N)==0

o19 = (true, true, true)

o19 : Sequence

Example 5.5. Let Q = Q[u, v, w, x, y, z] and R = Q/I, where

I = (uv − vx,uw − uz − wx + xz, vw − vz, u2 − v2 − 2ux + x2,

v2 − w2 + 2wz − z2, xy − vx, xz, yz − vz,

x2 − y2 + 2vy − v2, v2 + y2 − 2vy − z2).

Then R is a zero-dimensional Gorenstein minimal intersection.

i20 : Q = QQ[u,v,w,x,y,z];

i21 : I = ideal(u*v-v*x,u*w-u*z-w*x+x*z,v*w-v*z,u^2-v^2-2*u*x+x^2,v^2-w^2+2*w*z-z^2,
x*y-v*x,x*z,y*z-v*z,x^2-y^2+2*v*y-v^2,v^2+y^2-2*v*y-z^2);

o21 : Ideal of Q

If we let I1 be generated by the first five generators of I and I2 generated by the
second five, then we exhibit that R is an minimal intersection.

i22 : Tor_1(coker matrix{{
u*v-v*x,u*w-u*z-w*x+x*z,v*w-v*z,u^2-v^2-2*u*x+x^2,v^2-w^2+2*w*z-z^2}},
coker matrix{{
x*y-v*x,x*z,y*z-v*z,x^2-y^2+2*v*y-v^2,v^2+y^2-2*v*y-z^2}}) == 0

o22 = true

The last map in the following resolution of I over Q shows that in fact R is
Gorenstein.

i23 : C=res I

1 10 35 52 35 10 1
o23 = Q <-- Q <-- Q <-- Q <-- Q <-- Q <-- Q <-- 0

0 1 2 3 4 5 6 7

o23 : ChainComplex

i24 : ideal transpose C.dd_6 == I

o24 = true

Next we identify a module M which participates in non-trivial vanishing. We
compute the t̃i,j for M and show that t̃2,6 = t̃2,7 = t̃2,8 = t̃2,9 = t̃2,10 = 0. Then we
show that the corresponding complex

F̃2 ⊗Q R1

e∂2⊗R1−−−−→ F̃1 ⊗Q R1

e∂1⊗R1−−−−→ F̃0 ⊗Q R1

has zero homology.

i25 : R = Q/I;
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i26 : M = coker matrix{{u-x,v,w-z}};

i27 : Mres = res(M,LengthLimit=>6)

1 3 8 21 55 144 377
o27 = R <-- R <-- R <-- R <-- R <-- R <-- R

0 1 2 3 4 5 6

o26 : ChainComplex

i28 : tM = getEisoplist(Mres,2);

i29 : tM#0#5,tM#0#6,tM#0#7,tM#0#8,tM#0#9

o29 = (0, 0, 0, 0, 0)

o29 : Sequence

i30 : use Q;

i31 : R1 = Q/ideal(u*v-v*x,u*w-u*z-w*x+x*z,v*w-v*z,
u^2-v^2-2*u*x+x^2,v^2-w^2+2*w*z-z^2);

i32 : homology(lift(Mres.dd_1,Q) ** R1,lift(Mres.dd_2,Q) ** R1) == 0

o32 = true

Now we identify a companion module N for M such that the pair has non-
trivial vanishing of all higher Tor. We compute the t̃i,j for N and show that
t̃2,1 = t̃2,2 = t̃2,3 = t̃2,4 = t̃2,5 = 0. Then we show that the corresponding complex
has zero homology.

i33 : use R;

i34 : N = coker matrix{{x,y-v,z}};

i35 : Nres = res(N,LengthLimit=>6)

1 3 8 21 55 144 377
o35 = R <-- R <-- R <-- R <-- R <-- R <-- R

0 1 2 3 4 5 6

o35 : ChainComplex

i36 : tN = getEisoplist(Nres,2);

i37 : tN#0#0,tN#0#1,tN#0#2,tN#0#3,tN#0#4

o37 = (0, 0, 0, 0, 0)

o37 : Sequence

i38 : use Q;

i39 : R2 = Q/ideal(x*y-v*x,x*z,y*z-v*z,x^2-y^2+2*v*y-v^2,v^2+y^2-2*v*y-z^2);

i40 : homology(lift(Mres.dd_1,Q) ** R2,lift(Mres.dd_2,Q) ** R2) == 0

o40 = true

Finally, we compute the first few Tors, and then following Theorem 4.7, we show
that the first few Exti

R(M,HomR(N,R)) vanish.

i41 : Tor_1(M,N) == 0,Tor_2(M,N) == 0,Tor_3(M,N) == 0
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o41 = (true, true, true)

o41 : Sequence

i42 : Hom(N,R)

o42 = image | z2 |

1
o42 : R-module, submodule of R

i43 : Ext^1(M,Hom(N,R)) == 0,Ext^2(M,Hom(N,R)) == 0,Ext^3(M,Hom(N,R)) == 0

o43 = (true, true, true)

o43 : Sequence
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[20] L. M. Şega, Vanishing of cohomology over Gorenstein rings of small codimension, Proc.

Amer. Math. Soc. 131 (2003), 2313–2323.
[21] Y. Yoshino, Cohen-Macaulay modules over Cohen-Macaulay rings, London, Mathematical

Society Lecture Note Series 146, Cambridge University Press, Cambridge, 1990.

Department of Mathematics, University of Texas at Arlington, Arlington, TX 76019

E-mail address: djorgens@uta.edu

Department of Mathematics, Cornell University, Ithaca, NY 14850

E-mail address: frankmoore@math.cornell.edu


