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Let S and T be local rings with common residue field k, let R be
the fiber product S ×k T , and let M be an S-module. The Poincaré
series P R

M of M has been expressed in terms of P S
M , P S

k and P T
k

by Kostrikin and Shafarevich, and by Dress and Krämer. Here, an
explicit minimal resolution, as well as theorems on the structure of
ExtR (k,k) and ExtR (M,k) are given that illuminate these equalities.
Structure theorems for the cohomology modules of fiber products
of modules are also given. As an application of these results, we
compute the depth of cohomology modules over a fiber product.
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0. Introduction

In homological investigations one often has information on properties of a module over a certain
ring, and wants to extract information on its properties over a different ring. In this paper we consider
the following situation: S → k ← T are surjective homomorphisms of rings, k is a field, R is the fiber
product S ×k T , and M an S-module. We further assume that S and T are either local rings with
common residue field k, or connected graded k-algebras.

The starting point of this paper is the construction of an explicit minimal free resolution of M ,
viewed as an R-module, from minimal resolutions of M and k over S and k over T . This is carried
out in Section 1. The structure of the R-free resolution allows us to obtain precise information on the
multiplicative structure of cohomology over R , given by composition products. Some of the results
obtained in this work have been proved in the graded case by use of standard resolutions. However,
no similar approach can be used in the local case.

The symbol � denotes a coproduct, also known as a free product, of k-algebras.
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Theorem A. The canonical homomorphism of graded k-algebras

ExtS (k,k) � ExtT (k,k) → ExtS×k T (k,k)

defined by the universal property of coproducts of k-algebras is bijective. For every S-module M, the canonical
homomorphisms of graded left ExtR(k,k)-modules

ExtR(k,k) ⊗ExtS (k,k) ExtS (M,k) → ExtR(M,k)

defined by the multiplication map, is bijective.

The isomorphisms imply relations between the Poincaré series P R
M(t) of M over R to P S

M(t), P S
k (t)

and P T
k (t); this relationship was proved for M = k by Kostrikin and Shafarevich [6], and by Dress and

Krämer [3, Theorem 1] in the present setting. In [7], Polishchuk and Positselski proved the preceding
theorem, when S and T are connected k-algebras by using cobar constructions.

By combining Theorem A with an observation of Dress and Krämer concerning second syzygy
modules over fiber products, we obtain the following corollary.

Corollary B. Let L be an R-module. Then the second syzygy Ω2L decomposes as Ω2L = M ⊕ N where M and
N are S and T -modules, respectively. Furthermore, one has an exact sequence of graded left R-modules

0 → (
Σ−2 R ⊗S ExtS (M,k)

) ⊕ (
Σ−2 R ⊗T ExtT (N,k)

) → L → L/L�2 → 0,

where R = ExtR(k,k), S = ExtS (k,k), T = ExtT (k,k) and L = ExtR(L,k).

Theorem A shows that Ext−(k,k), as a functor in the ring argument, transforms products into co-
products. We prove that ExtR(−,k), as a functor from R-modules to ExtR(k,k)-modules, has a similar
property. In the graded setting, this was shown by Polishchuk and Positselski [7]. Their methods do
not extend to the local case, where even the equality of Poincaré series given is new. To give the
result, let M , N , and V be S , T , and k-modules respectively, that satisfy M/pM ∼= V ∼= N/qM , where
p,q are the kernels of the surjections S → k, T → k, respectively. Define an R-module M ×V N by the
exact sequence

0 → M ×V N ι−→ M × N
μ−ν−−−→ V → 0. (1)

Theorem C. In the notation above, the short exact sequence (1) induces a short exact sequence of graded left
ExtR(k,k)-modules

0 → ExtR(V ,k)

( μ∗
−ν∗

)
−−−−→ ExtR(M,k) ⊕ ExtR(N,k)

ι∗−→ ExtR(M ×V N,k) → 0.

In Section 4 we study the depth of ExtR(M,k) over ExtR(k,k) for an R-module M . The notion of
depth was used in [4] to study the homotopy Lie algebras of simply connected CW complexes, and of
local rings. More recently, Avramov and Veliche [1] have shown that small depth of ExtR(M,k) over
ExtR(k,k) is responsible for significant complications in the structure of the stable cohomology of M
over R . For cohomology modules of R-modules, large depth is impossible:

Theorem D. Let M be an R-module. Then one has an inequality

depthExtR (k,k) ExtR(M,k) � 1,

with equality if M is an S or T -module. In particular, one has depth ExtR(k,k) = 1.
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1. Resolutions over a fiber product

In this section, we set notation and define a complex that will be used throughout the article.
Let k be a field.

1.1. A k-algebra A is graded if there is a decomposition of A = ⊕
i∈Z

Ai as k-vector spaces, and for all
i, j ∈ Z, one has Ai A j ⊆ Ai+ j . We use both upper and lower indexed graded objects and adopt the
notation Ai = A−i . One says that A is connected if A0 = k and Ai = 0 for i < 0 (or equivalently, Ai = 0
for i > 0).

1.2. A left module M over a graded k-algebra A is graded if there is a decomposition M = ⊕
i∈Z

Mi
as k-vector spaces, and for all i, j ∈ Z, one has Ai M j ⊆ Mi+ j . For a homogeneous element m ∈ Mi , we
denote its degree by |m|.

For graded left A-modules M and N and an integer j, the degree j homomorphisms from M to N
form the abelian group

HomgrA(M, N) j = {
φ : M → N

∣∣ φ(Mi) ⊆ Ni− j for each i
} ⊆ HomA(M, N).

The collection of graded homomorphisms from M to N form the graded group

HomgrA(M, N) =
⊕
j∈Z

HomgrA(M, N) j .

1.3. In the sequel we assume that we are in one of the following situations:

(1) A is a commutative noetherian local ring, m denotes its unique maximal ideal, and k = A/m its
residue field.

(2) A is a non-negatively graded, connected, degree-wise finite k-algebra, and m denotes the unique
graded maximal ideal A+; in this case, the differentials in a complex of graded R-modules pre-
serve degrees.

We say that an A-module M is convenient provided it is finitely generated in case (1), and if it is
bounded below, degree-wise finite, and graded in case (2).

One says that a complex of free A-modules F is minimal if each module in the complex is con-
venient, and ∂(F ) ⊆ mF . When such a resolution exists, it is unique up to isomorphism. If M is a
convenient A-module, then M has a minimal free resolution, and such a resolution is unique.

1.4. In case 1.3(2), the A-module Exti
A(M,k) can be computed by taking a minimal graded free reso-

lution F of M over A, and computing Hi(HomgrA(M,k)). This provides Exti
A(M,k) the structure of a

graded A-module for each i; we denote the jth graded piece of Exti
A(M,k) by Exti

A(M,k) j .

Definition 1.5. Let A be a ring and X a graded set, X = ⊔
n�0 Xn . We let AX denote the graded free

left A-module with basis Xn in degree n, and set AXn = 0 when Xn = ∅. We call AX a graded based
module over A with basis X. Homomorphisms of based modules are identified with their matrices in
the chosen bases.

For a based module AX, we identify A ⊗A
AX and AX by means of the canonical isomorphism. We

use A[XY] to denote the graded based A-module AX ⊗A
AY with graded basis XY = ⊔

n[XY]n , where
[XY]n is the set of symbols

{xy | x ∈ Xi, y ∈ Y j, i + j = n}.
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Notation 1.6. We consider a diagram of homomorphisms of rings,

S ×k T
τ

σ

T

πT

S
πS

k

(1.6.1)

where πS and πT are surjective, and R := S ×k T is the fiber product:

S ×k T = {
(s, t) ∈ S × T : πS (s) = πT (t)

}
.

If S and T are as in either case of 1.3, then so is R , and its maximal ideal is m = p ⊕ q; we thus
identify p and q with subsets of R . Every S-module is considered an R-module via σ , and similarly
for T -modules.

Construction 1.7. Let M be an S-module. Let P → M and E → k be minimal free resolutions of M ,
respectively k, over S , and let F → k be a free resolution of k over T such that E0 = S and F0 = T .
Choose bases P, E, and F of the graded modules P , E , and F over S , S and T , respectively, so that
E0 = {1S } and F0 = {1T }. Consider the elements of P, E�1 and F�1 as letters of an alphabet. The
degree of a word in this alphabet is defined to be the sum of the degrees of its letters. The length of
a word w is defined to be the number of letters in w .

Let G be the set of all words of the form

{ f1e2 f3 · · · e2l−2 f2l−1 p2l} and {e1 f2e3 · · · e2l−1 f2l p2l+1},

where ei , f i and pi range over E�1, F�1 and P respectively, and l � 0. Form the free graded R-module
G = R G.

Every word w ∈ G has the form xw ′ for some letter x and a (possibly empty) word w ′ . Assume
that one has ∂(E) ⊆ pE , ∂(P ) ⊆ pP , ∂(F ) ⊆ qF , and set

∂G(w) =

⎧⎪⎨⎪⎩
∂ P (x) for x ∈ P,

∂ E (x)w ′ for x ∈ E,

∂ F (x)w ′ for x ∈ F,

and extend ∂G to an endomorphism of G by R-linearity. Set ∂G
i = ∂G |Gi . We remark that a matrix ϕ

with entries in p defines a homomorphism Sϕ of free S-modules, as well as a homomorphism Rϕ of
free R-modules.

Theorem 1.8. The maps of free modules ∂G
i defined in Construction 1.7 give a minimal free resolution

G: · · · → Gi
∂G

i−→ Gi−1 → ·· · → G1
∂G

1−→ G0 → 0,

of the R-module M.

Remark 1.9. The first few degrees of the complex G in Construction 1.7 look as follows. Note that
each map in the diagram acts on the leftmost letter of a word.
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R P3
R P2

R [F1P2]
R P1

R [E1F1P1]
R [F1P1]

R [F2P1]
R P0

R [E2F1P0]
R [E1F1P0]

R [F1E1F1P0]
R [F1P0]

R [E1F2P0]
R [F2P0]

R [F3P0]

To explain the notation used, let R [E�2G] denote the R-linear span of words whose first letter is
in Ei for some i � 2, see Definition 1.5. Let R [F1E�1G] denote the span of words starting with a letter
from F1, followed by a letter from E. Symbols such as R [F�2G], R [E1F�1G], etc. are defined similarly.

Proof of Theorem 1.8. To show that G is a complex, let w be a word of degree i, with i � 2. Suppose
w = xyw ′ where w ′ is a word, x is a letter of degree 1 and y is an arbitrary letter. For x ∈ E1 and
y ∈ F one has

∂2(w) = ∂
(
∂ E (x)yw ′) ∈ ∂(pyw ′) = p∂(yw ′) = p∂ F (y)w ′ ⊆ pqw ′ = 0.

The cases with x ∈ F1 and y ∈ P, and with x ∈ F1 and y ∈ E are similar. If w = xw ′ where x is a
letter of degree greater than or equal to 2, then ∂2(w) = 0, since R P, R E, and R F are complexes of
R-modules, and hence one has ∂2(w) = 0.

The proof that H(G) = M , proceeds in several steps. First, we describe a decomposition of an
arbitrary cycle into a sum of cycles of a special type. Then we show that each summand is in fact an
element of mG . Finally, we prove that each summand is a boundary through a computation that uses
the special form of these cycles and the exactness of the complexes E , F and P

Let a be an element of Gi , with i � 1. It has a unique expression (cf. Remark 1.9 for notation)

a = (x + x′) + (y + y′) + (z + z′) where

x ∈ R [E�2G], y ∈ R [F�2G], z ∈ R P,

x′ ∈ R [F1E�1G], y′ ∈ R [E1F�1G], z′ ∈ R [F1P].

Notice that one has

∂(x + x′) ∈ R [E�1G], ∂(y + y′) ∈ R [F�1G], ∂(z + z′) ∈ R P.

Thus, ∂(a) = 0 implies that each one of x + x′, y + y′ and z + z′ is a cycle. Next, we show each is a
boundary, by giving details for x + x′; the other cases are similar.

Since one has p ∩ q = 0 in R , and Gi−1 is a free R-module, it follows that p(Gi−1) ∩ q(Gi−1) = 0.
Therefore, ∂(x + x′) = 0 implies that x and x′ are cycles as well. Let l(w) denote the leftmost letter in
the word w . We may express x according to the decomposition
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R [E�2G]i =
⊕

2 � j � i
w ∈ Gi− j
l(w) ∈ F

R [Ej w].

If w is basis element of degree i − j with l(w) ∈ F and 2 � j � i, then one has ∂(R [Ej w]) ⊆ R [Ej−1 w].
Hence, each component of x in the decomposition above is a cycle. For similar reasons the compo-
nents of x′ in R [F1E�1G]

R [F1E�1G] =
⊕

2 � j � i
w ∈ Gi− j
l(w) ∈ F

R [F1Ej−1 w]

are cycles. Therefore, it is enough to show that every cycle of the form

x =
∑
e∈E j

reew ∈ R [Ej w] or

x′ =
∑
f ∈F1

∑
e∈E j−1

r f e f ew ∈ R [F1Ej−1 w]

where w is a fixed word, and re, r f e are in R , is a boundary.
We give details for x, the other case is similar. We first show that re ∈ m for each e ∈ E j . Indeed,

there is a commutative diagram of R-modules

· · · R [E3 w]
σ̃3

R [E2 w]
σ̃2

R [E1 w]
σ̃1

R w

σ̃0

0

· · · E3 E2 E1 E0 0

(1.9.1)

where the vertical maps send
∑

e∈E j
reew to

∑
e∈E j

σ(re)e. The image of x in E is a cycle, and hence
a boundary, of E . As E is minimal, the claim follows.

Suppose t = ∂( f ) for f ∈ F1. Then tew = ∂( f ew) is a boundary of G . As F is a resolution of
k over T , the images of F1 form a minimal generating set for q. Hence qew consists entirely of
boundaries.

The claims above show it suffices to prove the theorem when the coefficients are in p. In dia-
gram (1.9.1), we may also define a morphism of complexes γ̃ : pE → pR [Ew] by sending

∑
e∈E j

see to∑
e∈E j

seew , viewing se ∈ p ⊂ R . Note that γ̃ and σ̃ |pR [Ew] are inverses of one another.

Suppose that x ∈ pR [Ew] is a cycle. Then σ̃ (x) is a cycle in E . Hence there exists u so that ∂ E (u) =
σ̃ (x). One then has

∂
(
γ̃ (u)

) = γ̃
(
∂ E (u)

) = γ̃
(
σ̃ (x)

) = x. �
Two special cases of the theorem are used in Section 3.

Example 1.10. When M = k, we can take P = E. Let D be the resolution given by Theorem 1.8. Since
P0 = {1}, we can also replace all basis elements of the form w1 with a basis element w of the same
degree, and set ∂ D(1R) = 0. Therefore, in low degrees, D has the form
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R E3
R E2

R [F1E2]
R E1

R [E1F1E1]
R [F1E1]

R [F2E1]
R

R [E2F1]
R [E1F1]

R [F1E1F1]
R F1

R [E1F2]
R F2

R F3

Example 1.11. When M = T , applying the theorem with the roles of S and T reversed, one has Pi = 0
for i �= 0, and P0 = {1}. Let C be the resolution given by Theorem 1.8. Letting w denote the basis
element w1 as above, we see that C is given by the top half of the diagram in Example 1.10.

2. Cohomology of coproducts of graded connected algebras

In this section, we remind the reader of the construction of coproducts of connected algebras, and
collect some facts regarding their depth and Hilbert functions. The results in this section are applied
to the Ext algebras of rings as in 1.3 in Section 4.

2.1. If B and C are graded connected k-algebras, the coproduct of B and C in this category is the free
product of B and C , denoted B � C , and can be described as follows. A k-basis for (B � C)n consists of
all elements of the form x1 ⊗ · · · ⊗ xp with |x1| + · · · + |xp| = n, and the factors xi alternate between
elements of the homogeneous bases of B+ and C+ . Multiplication in B � C is given by

(v ⊗ · · · ⊗ x)(y ⊗ · · · ⊗ w) =
{

v ⊗ · · · ⊗ xy ⊗ · · · ⊗ w for x, y ∈ B or x, y ∈ C;
v ⊗ · · · ⊗ x ⊗ y ⊗ · · · ⊗ w otherwise.

We say that a tensor product of the form x1 ⊗ x2 ⊗ · · · ⊗ xp has length p, and that it starts
in Bi (respectively Ci ) if x1 is in Bi (respectively Ci ); the expression that the product ends in Bi

(respectively Ci ) has a similar meaning. In the sequel, we set A = B � C , and we consider B and C as
subalgebras of A. Thus, A is free as a right graded B-module with basis given by those elements in
the basis of A described above that end in C .

2.2. For a graded left B-module M , A ⊗B M is a graded left A-module. A k-basis for (A ⊗B M)n consists
of all elements of the form x1 ⊗ · · · ⊗ xp−1 ⊗ mp such that |x1| + · · · + |xp−1| + |mp| = n, p � 1, and
the xi alternate between being elements of the homogeneous bases of B+ and C+ , with xp−1 in C .
The action of A on A ⊗B M is given by

(v ⊗ · · · ⊗ x)(y ⊗ · · · ⊗ w) =
⎧⎨⎩

v ⊗ · · · ⊗ xy ⊗ · · · ⊗ w for x, y ∈ B or x, y ∈ C ;

v ⊗ · · · ⊗ xw for x ∈ B and y ∈ M;
v ⊗ · · · ⊗ x ⊗ y ⊗ · · · ⊗ w otherwise.
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We say that a tensor of the form x1 ⊗ x2 ⊗ · · · ⊗ xp has length p, and starts in Bi (respectively Ci ) if
x1 is in Bi (respectively Ci ). We identify the span of those tensors of length one with M , and hence
M is a left B-submodule of A ⊗B M .

Put L = A ⊗B M . One then sees that every homogeneous element l ∈ L can be written in the form

l = lB + lC + lM (2.2.1)

where the terms in lB and lC start in B and C , respectively, and lM is in M .

2.3. Let B and C be graded connected k-algebras, and choose minimal homogeneous sets of generators
X of B and Y of C as k-algebras. One then has resolutions of k of the form

· · · B U
∂ B

2
B X

∂ B
1

B 0

· · · C V
∂C

2
C Y

∂C
1

C 0

where ∂ B
1 in 2.3 is given by ∂ B

1 (x) = x, and one may similarly take ∂C
1 (y) = y. One can form a free

resolution of k over A, which starts as

F = · · · AU ⊕ AV
∂2

AX ⊕ AY
∂1

A 0, (2.3.1)

where the maps are given by the following formulas, see [5, Example 21(c)]:

∂1 = A ⊗B ∂ B
1 + A ⊗C ∂C

1 , ∂2 =
(

A ⊗B ∂ B
2 0

0 A ⊗C ∂C
2

)
Proposition 2.4. Let B and C be graded connected k-algebras with B1 �= 0 �= C1 , and let M be a graded left
B-module with Mi = 0 for i < 0 and M0 �= 0. If either of the conditions

(i) C+C1 �= 0 �= C2 or B+B1 �= 0 �= B2;
(ii) C+ = C1 and dimk C1 � 2, or B+ = B1 and dimk B1 � 2

are satisfied, then one has

Ext1
A(k, A ⊗B M)�2 �= 0.

Proof. Put L = A ⊗B M . With F as in (2.3.1), standard isomorphisms identify HomgrA(F , L) with the
complex

0 → L
∂∗

1−−→ LX ⊕ LY → LU ⊕ LV → ·· · ,

where ∂∗
1 is given by

∂∗
1 (l) = (

(xl)x∈X, (yl)y∈Y
)
.

Fix elements β,γ of the same degree and set

φβ,γ = (
(xβ)x∈X, (yγ )y∈Y

)
. (2.4.1)
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One checks directly that this is a cocycle. We first prove that depthA L = 1 holds when C satisfies
C+C1 �= 0 �= C2 by choosing β and γ so that φβ,γ represents a nonzero cohomology class.

If C satisfies hypothesis (i), then one can choose elements c, c′ ∈ Y with cc′ �= 0 and nonzero
elements b ∈ B1 and m ∈ M0. Set

β = cc′m and γ = bcm.

Suppose that φ = φβ,γ is a coboundary. Then there exists l ∈ L so that φ = ((xl)x∈X, (yl)y∈Y). Write
l in the form (2.2.1) and fix y ∈ Ya for some a � 1. Using the decomposition in (2.2.1), one has

ybcm = ylB + ylC + ylM . (2.4.2)

Note that ybcm starts in Ca , while ylB starts in C>a . Also, the length of ybcm is 4 and the length
of ylM is 2. Therefore, it follows that ylC = ylM = 0 for all y ∈ Y, and 2.2 implies lM = 0. One can
similarly deduce XlB = 0 by considering the equation xcc′m = xlB + xlC .

Returning to (2.4.2), one now has ybcm = ylB . From 2.2, one concludes lB = bcm. One can similarly
deduce that lC = cc′m. For each x ∈ X and y ∈ Y, one then has

xβ + yγ = φ(x + y) = (x + y)(β + γ )

= xβ + xγ + yβ + yγ .

Therefore, xγ + yβ = 0 holds. Arguing as before, we obtain xγ = yβ = 0 for each x ∈ X and y ∈ Y,
and hence yc = 0 for each y ∈ Y, contradicting our choice of c.

If B satisfies hypotheses (i), choose b,b′ ∈ X such that bb′ �= 0. For any c ∈ Y, one can argue as
above, taking β = cbcm and γ = bb′cm to deduce that φβ,γ is not a coboundary.

For case (ii), assume that C+ = C1 and dimk C1 � 2, so that we may choose c, c′ ∈ Y. In the notation
from (2.4.1), we set φ = (0, (yγy)) ∈ LX ⊕ LY where

γy =
{

bcm, y = c,

bc′m, y �= c.

One checks directly that φ is a cocycle.
If φ is a coboundary, then there exists an l ∈ L so that φ = ((xl)x∈X, (yl)y∈Y). Arguing as before,

one gets ybcm = ylB . Since the elements of Y are left non-zerodivisors on elements of L starting
in B , one has lB = bcm. However, one also gets by a similar argument that lB = bc′m, a contradiction.
Therefore, φ is not a coboundary. One may give a similar argument if the hypothesis on B in case (ii)
is satisfied. �
Definition 2.5. For a graded connected k-algebra B and a graded left B-module M , one defines the
depth of M over B by means of the formula

depthB M = inf
{
n ∈ N

∣∣ Extn
A(k, M) �= 0

}
.

The following proposition appears in [5, Example 36(e)2] when B and C are universal enveloping
algebras of graded Lie algebras. Our argument is an adaptation of what appears there.

Proposition 2.6. Let B and C be graded connected k-algebras with B1 �= 0 �= C1 , and let M be a graded left
B-module with Mi = 0 for i < 0 and M0 �= 0. One then has

depthA(A ⊗B M) � 1.
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In particular, equality holds if any of the conditions of Proposition 2.4 are satisfied.

Proof. We show that for any b ∈ B1 \ {0}, c ∈ C1 \ {0}, one of bl or cl is nonzero. If lM �= 0, then one
has clM �= 0, and hence every term in clM starts in C and has length 2. But every term in clB has
length at least 3, and each term in clC starts in C�2. Therefore, none of the terms in clB or clC can
cancel the terms in clM , and hence cl �= 0. One can similarly argue that if one of lB or lC is nonzero,
then clB or blC , respectively, is nonzero. �
Lemma 2.7. If B ∼= k[x]/(x2) and C ∼= k[y]/(y2), then for each A-module L, one has

depthA L � 1.

In particular, for each B-module M, one has depthA(A ⊗B M) = 1.

Proof. Consider the k-subalgebra D of A generated by xy + yx. The algebra D is a central polynomial
subalgebra such that A is a free graded left and right D-module with basis {1, x, y, xy}. In such a
situation, the depth of A-modules may be instead computed over D , see [1, Corollary A.7]. Therefore,
the depth of A-modules are bounded above by the global dimension of D , which is one. One may
now appeal to Proposition 2.6 for the final claim. �

We conclude this section by collecting some numerical data on modules over coproducts of alge-
bras.

2.8. Let M be a graded free k-vector space with Mi = 0 for i � 0 and dimk Mi finite for all i. The
Hilbert series of M is the formal Laurent series

M(t) =
∑

i

dimk Mit
i .

If M(t) is defined, we say that M has a Hilbert series.

2.9. Let M and N be graded vector spaces with Hilbert series. One then has

(M ⊗k N)(t) = M(t)N(t). (2.9.1)

Let Tk(M) denote the tensor algebra of M over k. If Mi = 0 for i � 0, then one also has

Tk(M)(t) = 1

1 − M(t)
. (2.9.2)

The first claim is clear. For the second, note that since Mi = 0 for i � 0, Tk(M) has a Hilbert series.
Furthermore, there is an isomorphism of graded vector spaces Tk(M) ∼= k ⊕ (M ⊗k Tk(M)). The desired
result follows.

Lemma 2.10. Let B and C be graded connected k-algebras, M a graded right B-module, and suppose that B,
C , and M have Hilbert series. One then has

(A ⊗B M)(t) = M(t)C(t)

B(t) + C(t) − B(t)C(t)
.
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Proof. The basis and multiplication table of A given in 2.1 shows there is an isomorphism of right
B-modules

A ∼= C ⊗k Tk(B+ ⊗k C+) ⊗k B.

Tensoring over B with M on the right gives

A ⊗B M ∼= (
C ⊗k Tk(B+ ⊗k C+)

) ⊗k M.

A computation of Hilbert series using (2.9.1) and (2.9.2) gives the desired equality. �
3. The Yoneda algebra

The notation and assumptions from Theorem 1.8 are in force throughout the section.

3.1. For a ring A and an A-module L, we say L has a Poincaré series if there exists a free resolution
of L such that each free module is finitely generated. In this case, one then defines the Poincaré series
of L over A to be the formal power series

P A
L (t) :=

∑
i

dimk Exti
A(L,k)ti .

For example, if S and M are as in 1.3(1) with S noetherian and M finitely generated, M has a Poincaré
series.

In addition to the setup given in Theorem 1.8, we assume for the remainder of the section that M
and k have Poincaré series over S , and that k has a Poincaré series over T .

Theorem 3.2. One has an equality of formal power series

1

P R
M(t)

= P S
k (t)

P S
M(t)

(
1

P S
k (t)

+ 1

P T
k (t)

− 1

)
.

Proof. One may describe the basis G in Theorem 1.8 as a basis of the k-vector space kF ⊗k
Tk(

kE�1 ⊗k
kF�1) ⊗k

kP. Therefore, (2.9.1) and (2.9.2) give

G(t) = P (t)F (t)

1 − (E(t) − 1)(F (t) − 1)
.

Since G is a minimal resolution of M over R , the formula above gives the desired equality. �
The equality of Poincaré series given in Theorem 3.2 was first obtained in [6] for M = k and in [3,

Theorem 1] in general.

3.3. Let R = ExtR(k,k), S = ExtS (k,k) and T = ExtT (k,k) denote the Ext algebras of R , S , and T ,
respectively. The functor Ext−(k,k) applied to the diagram of homomorphisms of rings
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R
τ

σ

T

πT

S
πS

k

induces a diagram
of graded algebras

R T
τ ∗

S

σ ∗

k

π∗
T

π∗
S

and hence defines a unique homomorphism of graded k-algebras

φ : S � T → R.

Theorem 3.4. The homomorphism of graded k-algebras φ is bijective.

For an S-module M , we let M S be the graded left S -module ExtS(M,k), and let M R be the
graded left R-module ExtR(M,k). The homomorphism σ : R → S also induces a homomorphism of
graded left S -modules θ∗ = Extσ (M,k): M S → M R . Since θ∗ is left σ ∗-equivariant, the formula ξ ⊗
μ �→ ξ · θ∗(μ) defines a homomorphism

λ : R ⊗S M S → M R .

Theorem 3.5. The homomorphism of graded left R-modules λ is bijective.

In order to prove Theorems 3.4 and 3.5, we set up notation and describe the multiplication tables
for the action of R on M R .

Notation 3.6. In the notation of Construction 1.7, one has isomorphisms

M R ∼= HomR(G,k) ∼= HomR(G/mG,k) ∼= Homk(G/mG,k)

of k-vector spaces. Let {ξ R
w | w ∈ G} ⊆ HomR(G,k) be the graded basis dual to the image of G in

G/m(G). Also, let {ξ S
e | e ∈ E} ⊆ HomR(G,k) be the graded basis dual to the basis given by the image

of E in E/pE . We abuse language and say that ξ R
w starts with (respectively ends in) E if the first

(respectively last) letter of w is in E. Also, we say that ξ R
w has length n if w has length n.

Our first lemma concerns the image of words of length one.

Lemma 3.7. For e ∈ E, f ∈ F, p ∈ P, and m ∈ M, one has

σ ∗(ξ S
e

) = ξ R
e , τ ∗(ξ T

f

) = ξ R
f , and θ∗(ξ S

p

) = ξ R
p .

Proof. Set

D ′ = R(D \ E) + qE ⊆ D.

The definition of ∂ D shows that D ′ is a subcomplex of D . Also, since R/q ∼= S one has D/D ′ = E as
complexes of R-modules. Let εR : D → k and ε S : E → k be the augmentation maps, and let ψ be the
canonical surjection ψ: D → D/D ′ = E . One then has εR = ε Sψ , and hence σ ∗(ξ S

e ) := ξ S
e ψ = ξ R

e , as
desired. The other cases are similar. �

Next we provide a partial multiplication table for the left action of R on M R .
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Lemma 3.8. Let w be a word D ∪ G, x be a letter in E ∪ F, and let m ∈ M. Let l(w) denote the first letter of w
and let r(w) denote the last letter of w. Then the left action of R on M R satisfies

ξ R
x · ξ R

w =
{

ξ R
f w if l(w) ∈ E ∪ P and x = f ∈ F,

ξ R
ew if l(w) ∈ F and x = e ∈ E.

Proof. Let w = ew ′ ∈ Gi , with e ∈ E j . We define a chain map ψw ∈ HomR(G, D)−i such that εRψw =
ξ R

w as follows. Set

Gw = {
v ∈ G

∣∣ v /∈ (
Gw ∪ G(E� j+1)w ′)},

where Gw denotes elements of G that end in w (including w), and G(E� j+1)w ′ denotes elements of
G ending in a letter of E� j+1, followed by w ′ . Let R [Gw ] be the free R-module generated by Gw .

The definition of ∂G shows R [Gw ] is a subcomplex of G . As graded R-modules, G/R [Gw ] is iso-
morphic to R [Gw] ⊕ R [G(E�j+1)w ′]. For v ′w ∈ Gw , set α(v ′w) = v ′ , and extend α by R-linearity to
a homomorphism α: R [Gw] → D . One then has

α
(
∂(v ′ w)

) = α
(
∂(v ′)w

) = ∂(v ′) = ∂
(
α(v ′w)

)
.

Let B be the subcomplex of G/R [Gw ] spanned by G(E� j+1)w ′ ∪ {w}, and let C be the resolution
of T as an R-module given in Example 1.11. As C is acyclic, and G(E� j+1)w ′ ∪ {w} is a basis of B ,
there exists a chain map β: B → C of degree −i satisfying β(w) = 1 ∈ C0.

Now one can extend α to all of R [Gw] ⊕ R [G(E�j+1)w ′] by defining it on B to be the composition

B
β−→ C ↪→ D . Note that the words in the image of B under α end in letters from E. Let ψw denote

the composition G � G/R [Gw ] α−→ D . One then has εRψw = ξ R
w , and hence ξ R

f · ξ R
w = ξ R

f ψw for each
element f of F.

By construction, one has ξ R
f ψw( f w) = 1. We show that ξ R

f ψw(v) is zero for all other basis ele-
ments v . If v ∈ Gw , then ψw(v) = 0. If v ∈ Gw , then write v = v ′w . Then

ξ R
f ψw(v) = ξ R

f (v ′) =
{

1 if v ′ = f ,

0 otherwise.

If v ∈ G(E� j+1)w ′ , then ψw(v) is in the span of words ending in E. Hence ξ R
f ψw(v) = 0. The other

cases of the left action are similar, and often easier. �
Proof of Theorem 3.4. Under the hypothesis of the section, the k-algebras R, S , and T are degree-
wise finite. Theorem 3.2 together with Lemma 2.10 show that R(t) = (S � T )(t). As φ is a homoge-
neous k-linear map, it suffices to prove that it is surjective. Lemma 3.8 shows that

{
ξ R

e

∣∣ e ∈ E
} ∪ {

ξ R
f

∣∣ f ∈ F
}

generates R as a k-algebra, and Lemma 3.7 shows that these generators are in the image of φ. �
Proof of Theorem 3.5. Under the hypothesis of the section, the graded R-modules M R and R ⊗S M S

are degree-wise finite. Lemma 2.10 and Theorem 3.2 show that the Hilbert series of R ⊗S M S and
M R are equal, so it is enough to prove that λ is surjective. By Lemma 3.8, M R is generated as a left
R-module by {ξ R

p | p ∈ P}. By Lemma 3.7, λ(1 ⊗ ξ S
p ) = ξ R

p , and hence λ is surjective. �
The functor ExtR(−,k) has a property similar to the one given in Theorem 3.4. We use below the

non-standard notation of μ∗ = λ(1 ⊗ ExtS (μ,k)) and similarly define ν∗ .
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Theorem 3.9. Let M be an S-module, N be a T -module, and V be a k-vector space for which there exists
exist surjective πS and πT -equivariant homomorphisms M

μ−→ V ν←− N with kerμ = pM and kerν = qN. The
exact sequence of R-modules

0 → M ×V N ι−→ M × N
μ−ν−−−→ V → 0

induces an exact sequence of graded left R-modules

0 → R ⊗k V ∗ (μ∗,−ν∗)−−−−−→ M R × N R
ι∗−→ L → 0

where L = ExtR(M ×V N,k), and V ∗ = Homk(V ,k). In particular, one has

P R
M×V N(t) = P R

M(t) + P R
N (t) − (rankk V )P R

k (t).

Proof. The sequence of R-modules defining M ×V N induces an exact sequence of graded R-modules

Σ−1 L → R ⊗k V ∗ (μ∗,−ν∗)−−−−−−→ M R × N R
ι∗−→ L → Σ

(
R ⊗k V ∗).

Thus, we need to show that (μ∗,−ν∗) is injective. Set n = rankk V , and let F be a free S-module
of rank n. One then has S-linear maps F → M

μ−→ V that induce homomorphisms of graded left S -
modules ExtS (V ,k) → M S → ExtS(F ,k). Tensoring with R over S on the left and using Theorem 3.5,
one obtains the top row of the diagram:

R ⊗S ExtS(V ,k)
μ∗

M R ExtR(F ,k)

R ⊗k V ∗

∼= (
R/RS +)n

∼=

Note that R ⊗k V ∗ ∼= Rn . The kernel of the bottom arrow is clearly (RS +)n , and therefore the kernel
of μ∗ is contained in the image of (RS +)n under the left vertical isomorphism. Similarly, the kernel
of ν∗ is contained in the image of RT + . Hence one has

Ker
(
μ∗,−ν∗) = Kerμ∗ ∩ Kerν∗ ⊆ RS + ∩ RT + = 0. �

3.10. In the situation of 1.3(2), the maps λ and φ from Theorems 3.4 and 3.5 are homomorphisms of
bigraded algebras and modules, respectively. We therefore have the following proposition.

Recall that a graded module M over a graded connected algebra A is said to be Koszul when
Exti

A(M,k) j = 0 if j �= i. A graded connected algebra A is Koszul if k is Koszul as an A-module. The
equivalence of the first two conditions was proved in [2, Theorem 1.c].

Proposition 3.11. The following conditions are equivalent.

(i) The algebra R is Koszul.
(ii) The algebras S and T are Koszul.

(iii) There exists an S-module M that is Koszul as an R-module.
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4. Depth of cohomology modules

The notation and conventions from 3.3 are still in force.
In this section, we compute the depth of the cohomology module of an R-module, where R is the

fiber product of commutative noetherian local rings (S,p,k) and (T ,q,k). For uses of this invariant,
see [4] or [1].

Theorem 4.1. Let (S,p,k) and (T ,q,k) be commutative noetherian local rings, set R = S ×k T , and let L be a
nonzero finitely generated R-module. If p �= 0 and q �= 0, then one has

depthR L � 1.

Equality holds if L is an S-module or a T -module.

In order to prove Theorem 4.1, we use an observation of Dress and Krämer in [3, Remark 3]. Recall
that the syzygy Ω R

1 L of an R-module L is the kernel of a (graded) free cover F → L; it is defined
uniquely up to isomorphism; for n � 2 one sets Ω R

n L = Ω R
1 Ω R

n−1 L. Every finitely generated R-module
L has a free cover ϕ : Q → L such that kerϕ ⊆ mQ .

Proposition 4.2. Let L be a left R-module. Then Ω R
2 (L) ∼= M ⊕ N where M is an S-module and N is a T -

module.

Proof. Recall that the maximal ideal of R is m = p⊕q. Let ϕ : Q → Q ′ be a minimal free presentation
of L over R . One then has

Ω R
2 (L) = Kerϕ = Kerϕ ∩ mA

= Kerϕ ∩ (pQ ⊕ qQ )

= (Kerϕ ∩ pQ ) ⊕ (Kerϕ ∩ qQ ).

To see the last equality, suppose that (x1, x2) in pQ ⊕qQ satisfies ϕ((x1, x2)) = 0. Note that ϕ((x1,0))

is in ϕ(pQ ) ⊆ pQ ′ and ϕ((0, x2)) is in ϕ(qQ ) ⊆ qQ ′ . Also, pQ ′ ∩ qQ ′ = 0, hence ϕ((x1,0)) = 0 =
ϕ((0, x2)).

Take M = Kerϕ ∩ pQ and N = Kerϕ ∩ qQ to get the desired result. �
By putting together Theorem 3.5 and Proposition 4.2, we obtain a nearly complete description of

the cohomology of R-modules.

Corollary 4.3. Set L = ExtR(L,k), and let NT = ExtT (N,k). There is then an exact sequence of graded left
R-modules

0 → (
Σ−2 R ⊗S M S

) ⊕ (
Σ−2 R ⊗T NT

) → L → L/L�2 → 0.

We can now prove Theorem 4.1.

Proof of Theorem 4.1. If pdR L is finite, then rankk L is finite, hence depthR L = 0. If pdR L = ∞,
then Ω2

R(L) �= 0, and by Proposition 4.2, we have Ω2
R(L) = M ⊕ N for some S-module M and some

T -module N , with M or N nonzero.
Set X := ExtR(M ⊕ N,k). Corollary 4.3 provides an exact sequence

HomR
(
k, L/L�2) ϑ−→ Ext1

R
(
k,Σ−2 X

) ψ−→ Ext1
R(k, L).
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If S � k[x]/(x2) or T � k[y]/(y2), then Proposition 2.4 shows that the module Ext1
R(k,Σ−2 X )�2

is nonzero. However, HomR(k, L/L�2) is nonzero only in internal degree zero and one. Therefore,
ϑ is not surjective, which provides the desired inequality. If L is an S or T -module, then Proposi-
tion 2.6 gives equality.

Otherwise, one has R ∼= k[x]/(x2) � k[y]/(y2), and both the inequality and equality follow from
Lemma 2.7. �
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