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Abstract We study H. Dao’s invariant ηR
c of pairs of modules defined over a complete

intersection ring R of codimension c having an isolated singularity. Our main result is that
ηR

c vanishes for all pairs of modules when R is a graded complete intersection ring of codi-
mension c > 1 having an isolated singularity. A consequence of this result is that all pairs of
modules over such a ring are c-Tor-rigid.

Mathematics Subject Classification (2000) 13D02 · 14C35 · 19L10

1 Introduction

Let R be an isolated complete intersection singularity, i.e., R is the quotient of a regular local
ring (Q, m) by a regular sequence f1, . . . , fc ∈ Q, and Rp is regular for all p �= m. For
any pair (M, N ) of finitely generated R-modules, the Tor modules TorR

j (M, N ) have finite
length when j � 0. Moreover, the lengths of the odd and even indexed Tor modules in high
degree follow predictable patterns. There are polynomials
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908 W. F. Moore et al.

Pev( j) = ac−1 j c−1 + · · · + a1 j + a0 and Podd( j) = bc−1 j c−1 + · · · + b1 j + b0

of degree at most c − 1 such that

length TorR
2 j (M, N ) = Pev( j) and length TorR

2 j+1(M, N ) = Podd( j)

for all j � 0 (see, for example, [7, Theorem 4.1]).
The polynomials Pev and Podd need not be the same, nor is it necessary that the coefficients

of j c−1 coincide. A natural invariant of the pair (M, N ) is thus the difference, ac−1 − bc−1,
of these coefficients. Up to a constant factor, this difference is Dao’s ηR

c -invariant.
For example, if c = 1, then Pev = a0 and Podd = b0 are both constants. This reflects the

fact that, in our present context, the Eisenbud operator

χ : TorR
j (M, N )

∼=−→ TorR
j−2(M, N )

is an isomorphism for j � 0. In this case, the invariant ηR
1 (M, N ) is (one half of) the

difference a0 − b0 of these Tor-lengths. This difference is Hochster’s θ -invariant.
In our previous paper [14] we studied Hochster’s θ -invariant in the special case where R

is a graded, isolated hypersurface singularity. Now we employ similar techniques to study the
invariant ηR

c for graded, isolated complete intersection singularities of codimension c > 1.
That is, we assume

R = k[x0, . . . , xn+c−1]/( f1, . . . , fc) (1.1)

where k is a field, the fl ’s are homogeneous polynomials, and Proj(R) is a smooth k-variety.
With these assumptions, the irrelevant maximal ideal m = (x0, . . . , xn+c−1) of R is the
only non-regular prime in Spec R. Our main result is that, for such a ring R, the invariant
ηR

c (M, N ) vanishes for all R-modules M and N , provided c > 1. See Theorem 4.5.
H. Dao [7, Theorem 6.3] has proven that the vanishing of ηR

c (M, N ) implies that the pair
(M, N ) is c-Tor-rigid, meaning that if c consecutive Tor modules vanish, then all subsequent
Tor modules vanish too. We therefore conclude that all pairs of modules over rings of the
form (1.1) having an isolated singularity are c-Tor-rigid, provided c > 1; our previous result
[14, Remark 3.16] shows c-Tor-rigidity for c = 1 when the dimension of R is even. In gen-
eral, one only has (c + 1)-Tor-rigidity for pairs of modules over a codimension c complete
intersection [15].

We conjecture that ηR
c (M, N ) = 0 for all pairs of modules (M, N ) over an isolated com-

plete intersection singularity of codimension c > 1, and hence that all pairs of modules over
such a ring are c-Tor-rigid. There are many well-known examples (of isolated hypersurface
singularities) where (M, N ) is not 1-Tor-rigid, and hence θ R(M, N ) �= 0.

The invariant ηR
c (M, N ) is also defined for complete intersection rings that are not isolated

singularities, provided the pair (M, N ) has the property that TorR
j (M, N ) has finite length

for all j � 0. We include an example due to D. Jorgensen and O. Celikbas that shows that ηR
2

need not vanish for a complete intersection of codimension 2 if the dimension of the singular
locus is positive.

2 Dao’s ηR
c -invariant

In this section we recall the definition of Dao’s ηR
c -invariant for complete intersections.

Proposition 2.1 Let R be the quotient of a noetherian ring Q by a regular sequence f1, . . . ,

fc. For a pair of finitely generated R-modules M and N, suppose the Q-module TorQ
j (M, N )
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An invariant for complete intersections 909

vanishes for all j � 0 and that the R-modules TorR
j (M, N ) are supported on a finite set

of maximal ideals {m1, . . . , ms} of R for all j � 0. Then there are polynomials Pev =
P R

ev(M, N ) and Podd = P R
odd(M, N ) of degree at most c − 1 so that

length TorR
2 j (M, N ) = Pev( j) and length TorR

2 j+1(M, N ) = Podd( j)

for all j � 0.

Proof Apply [7, Theorem 4.1(2)] to each Rmi and add the resulting polynomials to obtain
the polynomials here. See Appendix A for an alternative proof of this result. ��

The difference of the coefficients of j c−1 in Pev = P R
ev(M, N ) and in Podd is the basis for

an invariant of (M, N ). We can obtain these coefficients through the (c−1)-st iterated first dif-
ference: the first difference of a polynomial q( j) is the polynomial q(1)( j) = q( j)−q( j −1),
and recursively one defines q(i) = (q(i−1))(1).

Definition 2.2 In the set up of Proposition 2.1, define

ηR
c (M, N ) = (Pev − Podd)

(c−1)

2c · c! .

This invariant of the pair (M, N ) is Dao’s ηR
c -invariant [7, 4.2].

Remark 2.3 For a pair of R-modules, Dao sets

β j (M, N ) =
{

length TorR
j (M, N ) if length TorR

j (M, N ) < ∞ and

0 otherwise.

It can be shown, as an easy application of Proposition 2.1, that under the assumptions in that
result, if c > 0, then

ηR
c (M, N ) = lim

n→∞

∑n
j=0(−1) jβ j (M, N )

nc
.

This limit is the original definition of ηR
c (M, N ) due to Dao.

Our main result, Theorem 4.5, suggests the following conjecture:

Conjecture 2.4 Suppose R = Q/( f1, . . . , fc) with Q a regular noetherian ring and f1, . . . ,

fc a regular sequence, with c > 1. If the singular locus of R consists of a finite number of
maximal ideals, then ηR

c (M, N ) = 0 for all finitely generated R-modules M and N.

Remark 2.5 The case N = k of Conjecture 2.4 follows from a result due to L. Avramov,
V. Gasharov, and I. Peeva [2, 8.1]. In this case, the length of the Tor j record the Betti numbers
of M over R, and part of their result states that both the even and odd Betti numbers grow at
the same polynomial rate and have the same leading coefficient.

Example 2.6 The following example is due to D. Jorgensen [13, Example 4.1] and O. Cel-
ikbas [5, Example 3.11]. Let k be a field, and let R = k[[x, y, z, u]]/(xy, zu). Then R is a
local complete intersection of codimension two with positive dimensional singular locus. Let
M = R/(y, u), and let N be the cokernel of the map

R2

⎛
⎜⎜⎝

0 u
−z x
y 0

⎞
⎟⎟⎠

−−−−−−→ R3.

Then the pair (M, N ) is not 2-Tor-rigid, and hence, by [7, 6.3], ηR
2 (M, N ) �= 0.
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910 W. F. Moore et al.

3 The graded case

3.1 Let Q be a graded noetherian ring, f1, . . . , fc be a Q-regular sequence of homogeneous
elements, and R = Q/( f1, . . . , fc). Then for each pair of finitely generated graded R-mod-
ules M and N , TorR

j (M, N ) is a graded R-module for all j . Moreover, with the notation
dl = deg fl , the Eisenbud operators [8] χ1, . . . , χc determine maps of graded R-modules

χl : TorR
j (M, N ) → TorR

j−2(M, N )(−dl)

for all j , where for a graded R-module T , we define T (m) to be the graded R-module satis-
fying T (m)k = Tk+m . Since the actions of the χl commute, we may view

⊕
j,i TorR

j (M, N )i
as a bigraded module over the bigraded ring S = R[χ1, . . . , χc], where the degree of χl is
(−2,−dl).

The operators χl first appeared in work of Gulliksen [10] as (co)homology operators
(albeit in a different guise), where he proved that TorR∗ (M, N ) is artinian over S if and only
if TorQ∗ (M, N ) is artinian over Q. Compare our Appendix A.

Proposition 3.2 Let Q and R be as in paragraph 3.1. For a pair of finitely generated graded
R-modules M and N, suppose the Q-module TorQ

j (M, N ) vanishes for all j � 0 and there

is a finite set of maximal ideals of R on which the R-modules TorR
j (M, N ) are supported for

all j � 0. Then the action of the Eisenbud operators induces an exact (Koszul) sequence

0 → TorR
j (M, N ) →

c⊕
l=1

TorR
j−2(M, N )(−dl) →

⊕
l1<l2

TorR
j−4(M, N )(−dl1 − dl2) → · · · → TorR

j−2c(M, N )(−d1 − · · · − dc) → 0 (3.1)

of graded R-modules for j � 0.

Proof Within this proof, we use a simplified grading on S = R[χ1, . . . , χc], effectively
ignoring the twists given by the dl in (3.1). We let R lie in degree 0 and let each χl lie in
degree −2. By [7, Lemma 3.2], for a sufficiently large J , the module T = ⊕

j≥J TorR
j (M, N )

is graded artinian over the ring S. Consider the Koszul complex K = K [χ1, . . . , χc] ⊗S T .
For j � 0, the complex (3.1) is the j th graded piece of K . We prove this complex K is exact
in all but finitely many degrees.

As T is graded artinian over S, the total homology module H(K ) is as well. The descend-
ing chain of R-submodules

H(K ) ⊇
⊕
j≥1

H(K ) j ⊇
⊕
j≥2

H(K ) j ⊇ · · ·

intersects to 0. Since χl H(K ) = 0, see [16, IV.A.4], these R-submodules are in fact S-sub-
modules. Since H(K ) is artinian over S, the descending chain stabilizes. Thus there exists
an m > 0 such that H(K ) j = 0 for all j ≥ m. ��
3.3 For the remainder of this section, we assume Q = k[x0, . . . , xn+c−1] is a polynomial
ring over a field with each xi of degree one, f1, . . . , fc is a Q-regular sequence of homo-
geneous elements, and R = Q/( f1, . . . , fc). Let dl = deg( fl). In particular, R is graded.
When M and N are finitely generated graded R-modules, the torsion modules TorR

j (M, N )

are also graded.
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An invariant for complete intersections 911

Definition 3.4 Let R be as in paragraph 3.3. For finitely generated graded R-modules M
and N , and an integer F , define

G F (x, t) =
∑

i, j≥0

dimk

(
TorR

F+2 j (M, N )i

)
t i x j ∈ Q[[x, t]].

Remark 3.5 Note that if for some F � 0, TorR
F+2 j (M, N ) has finite length for all j ≥ 0,

then G F (x, t) belongs to (Q[t])[[x]].
For a finitely generated graded R-module T , its Hilbert series is

HT (t) =
∑
i≥0

dimk(Ti )t
i .

HT (t) is a rational function with a pole of order dim T at t = 1. In fact,

HT (t) = eT (t)

(1 − t)dim T
, (3.2)

where eT (t) is a Laurent polynomial [1, (1.1)], sometimes called the multiplicity polyno-
mial of T . The multiplicity polynomial of R is calculated by using the presentation R =
Q/( f1, . . . , fc); explicitly, since deg(xi ) = 1 and deg( fl) = dl ,

eR(t) =
c∏

l=1

(1 − tdl )/(1 − t)c. (3.3)

For graded R-modules M and N , we write the Hilbert series of TorR
j (M, N ) as Hj (t) or

just Hj . If M and N are such that the TorR
j (M, N ) have finite length for j � 0, then Hj (t),

j ≥ 0, has the property that the number of initial terms of Hj (t) that vanish goes to infinity
as j → ∞. It thus makes sense to form the sum∑

j≥0

(−1) j H j (t),

and, more generally, to evaluate G F (x, t) at x = 1 (or any constant; see Remark 3.5). Observe
that ∑

j≥0

(−1) j H j+F (t) = G F (1, t) − G F+1(1, t), (3.4)

for any F .

Lemma 3.6 Let R be a graded ring as in paragraph 3.3, and let M, N be finitely generated
graded R-modules such that TorR

j (M, N ) has finite length for j � 0. For F � 0 there is a
unique polynomial bF (x, t) ∈ Q[x, t] such that

G F (x, t) = bF (x, t)∏c
l=1(1 − tdl x)

. (3.5)

For E � 0 and even there is a unique polynomial ηR
c,E (M, N )(t) ∈ Q[t] such that

∑
j≥E

(−1) j H j (t) = ηR
c,E (M, N )(t)

eR(t)(1 − t)c
and ηR

c,E (M, N )(1) = 2c · c! · ηR
c (M, N ), (3.6)

where eR(t) is the multiplicity polynomial of R defined in (3.3).
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Proof Let s0 = 1, s1 = td1 + · · · + tdc , …, and sc = td1+···+dc ; that is, the sk are elementary
symmetric functions on the symbols tdl . The exactness of (3.1) for j � 0 gives the relation

s0 Hj − s1 Hj−2 + s2 Hj−4 + · · · + (−1)csc Hj−2c = 0,

from which it follows that, for F � 0, we have

(1 − s1x + s2x2−· · ·+(−1)cscxc)G F (x, t) = b0,F (t) + b1,F (t)x + · · ·+bc−1,F (t)xc−1,

for some polynomials bi,F (t). Set bF (x, t) equal to the right hand side of this equation and
use

∑c
k=0(−1)ksk xk = ∏c

l=1(1 − tdl x). Then (3.5) follows easily.
To establish (3.6), observe that for F � 0, we have

bF (x, 1)

(1 − x)c
= G F (x, 1) =

∑
j≥0

dimk TorR
F+2 j (M, N )x j .

Taking E � 0 to be even, set ηR
c,E (M, N )(t) to be bE (1, t) − bE+1(1, t). The first equation

in (3.6) follows immediately from (3.3), (3.4), and (3.5).
The leading coefficients of Pev(M, N ) and Podd(M, N ) are bE (1, 1)/(c − 1)! and bE+1

(1, 1)/(c − 1)!, and so the value of ηR
c,E (M, N )(t) at t = 1 is 2c · c! · ηR

c (M, N ). ��

Remark 3.7 The polynomials ηR
c,E (M, N )(t) depend on E , but, as Lemma 3.6 shows, they

have a common value at t = 1.

4 The vanishing of ηR
c

Throughout the remainder of this paper, we use the following notations and assumptions:

• k is a field;

• R = k[x0, . . . , xn+c−1]/( f1, . . . , fc), where deg xi = 1 for all i and
the fl ’s are homogeneous polynomials in m = (x0, . . . , xn+c−1) with
dl = deg( fl);• c > 0 and f1, . . . , fc forms a regular sequence;

• X = Proj(R) is a smooth k-variety.

(4.1)

Remark 4.1 Recall that the variety X is smooth if and only if m is the radical of the homoge-
neous ideal generated by the fl ’s and the maximal minors of the Jacobian matrix (∂ fl/∂xi ).
In particular, by the smoothness assumption, m = (x0, . . . , xn+c−1) is the only non-regular
prime of R.

For a quasi-projective scheme Z over a field k, we let G(Z) and K (Z) denote the Grot-
hendieck groups of coherent sheaves and locally free coherent sheaves, respectively. Recall
that if Z is regular (for example, if it is smooth over k), then the canonical map K (Z) → G(Z)

is an isomorphism. For further explanation and discussion of the relevant groups and maps,
see [14, §2.1].

From the assumptions (4.1), the smooth variety X = Proj(R) ⊂ Pn+c−1 has dimen-
sion n − 1 and degree d = d1 · · · dc. When k is infinite, there is a linear rational map

Pn+c−1 �����
Pn−1 that determines a regular function on an open subset containing X ,

and hence it induces a regular map

ρ : X → Pn−1
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An invariant for complete intersections 913

that is finite, flat, and of degree d . As X and Pn−1 are smooth and ρ is finite, we have the
following map and isomorphisms:

ρ∗ : K (X) ∼= G(X) → G(Pn−1) ∼= K (Pn−1).

We also have the isomorphism

Z[t]/(1 − t)n ∼= K (Pn−1)

that sends t �→ [O(−1)]. We will often identify K (Pn−1) with Z[t]/(1 − t)n ; for example,
if α ∈ K (X), then ρ∗(α) is interpreted as belonging to Z[t]/(1 − t)n . Likewise, we identify
K (Pn−1) ⊗Z Q with Q[t]/(1 − t)n .

The following three results are similar to [14, 4.1, 4.2, and 4.3]. We will establish the
vanishing of ηR

c (M, N ) for c > 1 by employing them in the same way that we used our
earlier results to show the vanishing of θ R(M, N ) = 2ηR

1 (M, N ) when dim R is even
[14, Theorem 3.2].

Lemma 4.2 [14, Lemma 4.1] Under the assumptions in (4.1) with k infinite, let M be a
finitely generated graded R-module and M̃ the associated coherent sheaf on X. Then

ρ∗([M̃]) = (1 − t)n HM (t)

in K (Pn−1)Q = Q[t]/(1 − t)n. In particular,

ρ∗(1) = ρ∗([OX ]) = eR(t) =
c∏

i=1

(1 + t + t2 + · · · + tdi −1) ∈ Q[t]/(1 − t)n .

Proof The proof of [14, Lemma 4.1], which is the c = 1 case, applies verbatim. ��
Lemma 4.3 [14, Lemma 4.2] Under the assumptions in (4.1) with k infinite, let M and N
be finitely generated graded R-modules. For any sufficiently large even integer E and for
any integer m ≥ 0, the rational function

(1 − t)n+m−c
ηR

c,E (M, N )(t)

(eR(t))2

does not have a pole at t = 1. Its image in Q[t](t)/(1 − t)n = Q[t]/(1 − t)n = K (Pn−1)Q

satisfies the equation

(1 − t)n+m−c
ηR

c,E (M, N )(t)

(eR(t))2 = (1 − t)m
(

ρ∗([M̃])
ρ∗(1)

· ρ∗([Ñ ])
ρ∗(1)

− ρ∗([M̃] · [Ñ ])
ρ∗(1)

)
.

In particular, taking m = c − 1 yields

(1 − t)n−1ηR
c (M, N ) = (1 − t)c−1

2c · c!
(

d · ρ∗([M̃])
ρ∗(1)

· d · ρ∗([Ñ ])
ρ∗(1)

− d2 · ρ∗([M̃] · [Ñ ])
ρ∗(1)

)
,

where deg X = d = d1 · · · dc.

Proof As in [14, Lemma 4.2], start with the equation of Hilbert series from [1, Lemma 7],
namely

HM HN

HR
=

∑
j≥0

(−1) j H j .
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914 W. F. Moore et al.

Splitting the sum at E � 0 and using the first relation in (3.6) gives

HM · HN

HR
=

E−1∑
j=0

(−1) j H j + ηR
c,E (M, N )(t)

eR(t) · (1 − t)c
.

Upon multiplying by (1 − t)m/HR = (1 − t)n+m/eR(t) and rearranging, this yields

(1 − t)m (1 − t)n HM

eR(t)
· (1 − t)n HN

eR(t)
− (1 − t)m

E−1∑
j=0

(−1) j (1 − t)n Hj

eR(t)

= ηR
c,E (M, N )(t)

(eR(t))2 (1 − t)n+m−c.

(4.2)

The first assertion follows from the fact that the expression before the equality in (4.2)
does not have a pole at t = 1, using (3.2). Since both sides of this equation are power series
in powers of 1 − t , we may take their images in Q[t]/(1 − t)n . Apply Lemma 4.2. The
expression before the equality in (4.2) becomes

(1 − t)m ρ∗([M̃])
ρ∗(1)

ρ∗([Ñ ])
ρ∗(1)

− (1 − t)m
E−1∑
j=0

(−1) j
ρ∗([ ˜TorR

j (M, N )])
ρ∗(1)

.

If E is large enough so that TorR
j (M, N ) has finite length for j ≥ E , then the alternating

sum is ρ∗([M̃] · [Ñ ])/ρ∗(1) where [M̃] · [Ñ ] is multiplication in the ring K (X). This gives
the first equation in the Lemma.

For the second equation, set m = c − 1. Define g(t) = ηR
c,E (M, N )(t)/(eR(t))2. As

eR(1) = d and ηR
c,E (M, N )(t) is a polynomial, g(t) is a rational function without a pole at

t = 1. Thus, modulo (1 − t)n ,

g(t)(1 − t)n−1 = g(1)(1 − t)n−1 + g(t) − g(1)

1 − t
(1 − t)n ≡ g(1)(1 − t)n−1.

Multiplication by d2 establishes the second equation. ��

In the next lemma and in the proof of our main theorem, we use étale cohomology. Assume
k is a separably closed field, fix a prime 	 �= char k, and write H j

ét (Z , Q	(i)) for the étale
cohomology of a scheme Z with coefficients in Q	(i). In addition, write H2∗

ét (Z , Q	(∗)) for⊕
i H2i

ét (Z , Q	(i)). This is a commutative ring under cup product. Moreover, the étale Chern
character gives a ring homomorphism
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An invariant for complete intersections 915

chét : K (Z)Q → H2∗
ét (Z , Q	(∗)).

We refer the reader to [9] for additional background.

Lemma 4.4 [14, Lemma 4.3] Under the assumptions in (4.1) with k separably closed, the
diagram

K (X)Q

d

ρ∗(1)
· ρ∗

��

chét
��

K (Pn−1)Q

chét
��

H2∗
ét (X, Q	(∗))

ρét∗
�� H2∗

ét (Pn−1, Q	(∗))

(4.3)

commutes, where ρét∗ is the push-forward map for étale cohomology.

Proof The proof of [14, Lemma 4.4], which is the c = 1 case, applies verbatim. ��
The following is the main result of this paper.

Theorem 4.5 Under the assumptions in (4.1) with k separably closed, let M and N be
finitely generated graded R-modules. For E a sufficiently large even integer, ηR

c,E (M, N )(t)

has a zero at t = 1 of order at least c − 1. In particular, ηR
c (M, N ) = 0 for c > 1.

Proof The claim is vacuous if c ≤ 1, and so assume c > 1. Let γ be the element chét (1 − t)
of H2∗

ét (Pn−1, Q	(∗)).
We apply chét to d2 times the first equation in Lemma 4.3 and use the commutative

diagram in Lemma 4.4 to obtain

d2 · chét

(
(1 − t)n+m−c · ηR

c,E (M, N )(t)
)

chét ((eR(t))2)
=

γ m
(
ρét∗ chét ([M̃]) · ρét∗ chét ([Ñ ]) − d · ρét∗

(
chét ([M̃]) · chét ([Ñ ])

))
. (4.4)

For α, β ∈ H2∗
ét (X, Q	(∗)), define

�m(α, β) = γ m(
ρét∗ (α) · ρét∗ (β) − d · ρét∗ (α · β)

)
.

We will prove that �m vanishes for any m ≥ 1. Using the projection formula

ρét∗ (ρ∗
ét (α

′) · ω) = α′ρét∗ (ω)

with ω = 1, and using the fact that ρét∗ (1) = d , we see that if α = ρ∗
ét (α

′) for some
α′ ∈ H2∗

ét (Pn−1, Q	(∗)), then

�m(α, β) = γ m(α′ρét∗ (1)ρét∗ (β) − d · α′ρét∗ (β)) = 0.

Likewise, �m(α, β) = 0 if β = ρ∗
ét (β

′). But since X is a complete intersection in projective
space, the map

ρ∗
ét : H2 j

ét (Pn−1, Q	( j)) → H2 j
ét (X, Q	( j))
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is an isomorphism in all degrees except possibly in degree 2 j = n − 1 (see [18, XI.1.6]).
So we may assume n is odd and that α, β ∈ Hn−1

ét (X, Q	(
n−1

2 )). Noticing that γ is in⊕
i≥1 H2i

ét (X, Q	(i)), we see that γ mρét∗ (α) · ρét∗ (β) and γ md · ρét∗ (α · β) belong to⊕
j≥0

H2n−2+2m+2 j
ét (X, Q	(n − 1 + m + j)).

This group vanishes when m ≥ 1 because dim(X) = n − 1 and étale cohomology vanishes
in degrees more than twice the dimension of a smooth variety over a separably closed field
[17, X.4.3]. As �m is zero for m ≥ 1, so too is the expression on the left-hand side of (4.4).

We have proven that for m ≥ 1,

d2 · chét ((1 − t)n+m−c · ηR
c,E (M, N )(t))

chét (eR(t))2 = 0

and hence

chét ((1 − t)n+m−c · ηR
c,E (M, N )(t)) = 0.

But the Chern character map with Q	 coefficients induces an isomorphism on projective
space,

chét : K (Pn−1) ⊗ Q	

∼=−→ H2∗
ét (Pn−1, Q	(∗)),

and therefore, (1 − t)n+m−c · ηR
c,E (M, N )(t) = 0 in Q[t]/(1 − t)n . That is, (1 − t)n divides

(1 − t)n+m−c · ηR
c,E (M, N )(t) in Q[t] so that ηR

c,E (M, N )(t)/(1 − t)c−m is a polynomial.
Taking m = 1 < c proves the Theorem. ��

The familiar example below shows that ηR
1 (M, N ) need not vanish, even under the assump-

tions (4.1), if dim R is odd.

Example 4.6 [12, Example 1.5] The assumption that c > 1 is necessary in the Theorem. Let
R = C[x, y, u, v]/(xu + yv) and set M = R/(x, y), N = R/(u, v), and L = R/(x, v).
Then ηR

1 (M, M) = 1
2 , ηR

1 (M, N ) = 1
2 , and ηR

1 (M, L) = − 1
2 .

Corollary 4.7 Under the assumptions in (4.1) and for every pair of finitely generated, but
not necessarily graded, R-modules M and N, if dim R > 0, then ηR

c (M, N ) vanishes when
c > 1. When dim R = 0, then ηR

c (M, N ) vanishes for all c.

Proof Upon passing to any faithfully flat field extension k′ of k, the assumptions (4.1) remain
valid, and, moreover, for finitely generated R-modules M and N , the value of ηR

c (M, N ) is
unchanged. In more detail, since the lengths involved are dimensions over the field k for ηR

c

and dimensions over the field k′ for η
R⊗kk′
c , we have equality

ηR
c (M, N ) = ηR⊗kk′

c (M ⊗k k′, N ⊗k k′).

In particular, by passing to the separable closure of k, we may assume that k is separably
closed.

Since ηR
c (−,−) is biadditive [7, Theorem 4.3] and defined for all pairs of finitely gen-

erated R-modules, it follows that ηR
c determines a bilinear pairing on G(R), and hence on

G(R)Q := G(R) ⊗Z Q. It suffices to prove that this latter pairing is zero.
Assume dim R > 0. From [14, Section 2.1], we recall the mapping from K (X)Q to G(R)Q

given as follows: if T is a finitely generated graded R-module with associated coherent sheaf
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T̃ on X , then K (X)Q → G(R)Q sends [T̃ ] ∈ K (X)Q to [T ] ∈ G(R)Q. As proven in [14,
(2.4)], this mapping is onto, and hence the vector space G(R)Q is spanned by classes of
graded R-modules. Therefore, Theorem 4.5 applies to prove the pairing on G(R)Q induced
by ηR

c is the zero pairing.
Finally, if dim R = 0, then [R] = dimk(R) · [k] in G(R)Q, and hence [M] = length(M) ·

[k] in G(R)Q. Since ηR
c (R, R) = 0 as R is projective, it follows that ηR

c vanishes for all
pairs. ��
Corollary 4.8 With the assumptions in (4.1), let M and N be finitely generated, but not
necessarily graded, R-modules. Then for c > 1, the pair (M, N ) is c-Tor-rigid; that is, if c
consecutive torsion modules TorR

i (M, N ), . . . , TorR
i+c−1(M, N ) all vanish for some i ≥ 0,

then TorR
j (M, N ) = 0 for j ≥ i .

Proof By Corollary 4.7, ηR
c (M, N ) = 0 when c > 1, and the result immediately follows

from [7, Theorem 6.3]. ��

Appendix A Adapting Gulliksen’s Work

We show in this appendix how to modify Gulliksen’s work in [10] to give an alternative proof
of Proposition 2.1 from the body of this paper. The key result is Proposition A.1 below, which
was originally proven by Dao [7, Lemma 3.2]. Using this result, a standard argument easily
establishes Proposition 2.1.

Proposition A.1 Assume Q is a noetherian ring, f1, . . . , fc ∈ Q is a regular sequence,
R = Q/( f1, · · · , fc) and M and N are finitely generated R-modules. If for all i � 0,
TorR

i (M, N ) has finite length and TorQ
i (M, N ) = 0, then there exists an integer j such that⊕

i≥ j TorR
i (M, N ) is artinian as a module over the polynomial ring R[χ1, . . . , χc], where

the χi ’s act via the Eisenbud operators.

Our proof of this result follows Gulliksen’s proof of [10, Theorem 3.1]; we use two lemmas,
both of which are analogues of his results. Our Lemma A.3 sidesteps the issue raised in [7,
Example 2.9] while following [10, Lemma 1.2]. First we give some notation.

A.2 Let G be a Z graded ring concentrated in non-positive degrees (i.e., Gi = 0 for all i > 0).
Note that given a graded G-module H , for any integer r , we have that H<r := ⊕

i<r Hi

is a G-graded submodule of H and H≥r := H/H<r is a G-graded quotient module of H .
Following Dao, we say that a graded G-module H is almost artinian if there is an integer r
such that H≥r is artinian as a G-module.

Lemma A.3 Let G and H be as in paragraph A.2. Assume that Hi is an artinian G0-module
for all i � 0. Let X : H → H be a homogeneous G-linear map of negative degree. If ker(X)

is almost artinian as a G-module, then H is almost artinian as a G[X ]-module.

Proof Let X have degree w < 0. For each r , there is a map of degree w on quotient modules
given by multiplication by X :

X≥r : H≥r → H≥r+w.

Note that ker(X≥r ) = ker(X)≥r , where the latter uses the notation of A.2, and hence ker(X≥r )

is artinian as a G-module for r � 0, by assumption.
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Since w < 0, there is a canonical surjection π≥r+w : H≥r+w −� H≥r of graded G-mod-
ules having degree 0. Define Y≥r = π≥r+w ◦ X≥r so that Y≥r is the endomorphism of H≥r

of degree w given by multiplication by X , and we have the left exact sequence

0 → ker(X≥r ) → ker(Y≥r )
·X→ ker(π≥r+w). (4.5)

The module ker(π≥r+w) may be regarded as a G0-module via restriction of scalars along
the inclusion G0 ↪−→ G. As a G0-module, ker(π≥r+w) is a finite direct sum of Hi for
i = r + w, . . . , r . Hence for r � 0, it is an artinian G0-module by our assumption. So for
r � 0, it follows that ker(π≥r+w) must also be artinian as a G-module. Thus for r � 0, the
module ker(Y≥r ) is an artinian G-module, as follows from the exact sequence (4.5).

It follows from [10, Lemma 1.2] that H≥r is artinian as a graded G[Y≥r ]-module, for
r � 0; that is, H is an almost artinian G[X ]-module. ��

The Koszul algebra K associated to a regular sequence f1, . . . , fc of elements of a
commutative ring Q is defined to be the following DG Q-algebra: The underlying graded
Q-algebra is the exterior algebra

∧∗
Q(Qc) on the free Q-module Qc, indexed so that

∧ j
Q(Qc)

lies in homological degree j . Let T1, . . . , Tc be the standard basis of Qc. The differential ∂

of K is uniquely determined by setting ∂(Ti ) = fi and requiring that it satisfy the Leibniz
rule: ∂(ab) = ∂(a)b + (−1)deg aa∂(b).

The Koszul algebra comes equipped with a ring map, called the augmentation, to its degree
zero homology, namely H0(K ) = Q/( f1, . . . , fc) =: R. Since f1, . . . , fc is Q-regular, the
augmentation K � R is a quasi-isomorphism, so that K is a DG algebra resolution of R
over Q that is free as a Q-module. Recall that a DG module over K is a graded K -module L
equipped with a differential dL of degree minus one so that dL(ax) = ∂(a)x +(−1)|a|adL(x)

holds for all homogeneous elements a ∈ K and x ∈ L . See [3] for more background material
on DG algebras and DG modules.

A.4 Let K be Koszul algebra over Q associated to a regular sequence f1, . . . , fc in Q and
let I = ker(K −� R) be the augmentation ideal. Let L be a DG module over K that is
graded free as a module over the graded ring underlying K . Let N be a finitely generated
R-module. Define Y to be L ⊗Q R = L/( f1, . . . , fc)L . For any subset S = {i1, . . . , is}
of {1, . . . , c}, define IS = (Ti1 , . . . , Tis ) and set Y S = Y/ISY . In particular, Y ∅ = Y and
Y {1,...,c} = Y/I Y = L/I L = L ⊗K R. For each S, the complex Y S is a complex of
Q-modules, and in fact of R-modules.

A.5 Gulliksen shows [10, p. 176–8] that for i ∈ S there is an exact sequence of complexes
of Q-modules

0 → Y S Ti→ Y S\{i} → Y S → 0

that is degree-wise split exact. It follows that

0 → Y S ⊗Q N → Y S\{i} ⊗Q N → Y S ⊗Q N → 0 (4.6)

is also exact, giving a long exact sequence in homology. The boundary map in this sequence,
H(Y S ⊗Q N ) → H(Y S ⊗Q N ), is, up to sign, the action of Xi on H(Y S ⊗Q N ) as defined
by Gulliksen. Thus Xi has degree −2, since Ti has degree +1. Gulliksen proves that these
actions commute: Xi X j = X j Xi on H(Y S ⊗Q N ) when i, j ∈ S. When S = {1, . . . , c},
these actions endow H(L/I L ⊗R N ) with the structure of a graded module over the graded
ring R[X1, . . . , Xc] where each Xi has degree −2.

Our next lemma is similar to [10, Lemma 3.2(ii)].
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Lemma A.6 With the assumptions in paragraph A.4, and with the Xi from paragraph A.5,
if Hi (L/I L ⊗R N ) is artinian as an R-module and Hi (L ⊗Q N ) = 0 for i � 0, then
H(L/I L ⊗R N ) is almost artinian as an R[X1, . . . , Xc]-module.

Proof We have that for i � 0, the R-module Hi (Y {1,...,c} ⊗R N ) = Hi (L/I L ⊗R N ) is
artinian and Hi (Y ∅ ⊗Q N ) = Hi (L/( f1, . . . , fc)L ⊗Q N ) = 0.

We first observe that, for every S ⊆ {1, . . . , c}, Hi (Y S ⊗Q N ) is also artinian over R,
for i � 0. Indeed, this follows immediately by descending induction on the cardinality of S
using the long exact sequence in homology associated to the exact sequence (4.6).

For S = {i1, . . . , is} ⊆ {1, . . . , c}, let GS = R[Xi1 , . . . , Xis ]. In particular, G∅ = R and
G{1,...,c} = R[X1, . . . , Xc]. We prove H(Y S ⊗Q N ) is an almost artinian GS-module for each
S, by induction on the cardinality of S. When S = ∅, then Y S = Y ∅ = L/( f1, . . . , fc)L and,
by assumption, H(Y ∅ ⊗Q N ) = H(L/( f1, . . . , fc)L ⊗Q N ) is an almost artinian R-module.

Assume that i ∈ S. The exact sequence (4.6) gives an exact homology sequence

H(Y S\{i} ⊗Q N ) �� H(Y S ⊗Q N )
Xi �� H(Y S ⊗Q N ).

By the induction hypothesis, H(Y S\{i} ⊗Q N ) is almost artinian as a GS\{i}-module, and
since the graded quotient of an almost artinian module is almost artinian, we see that ker(Xi )

is almost artinian. Since Hq(Y S ⊗Q N ) is artinian over G0 = R, for q � 0, as was shown
above, Lemma A.3 applies to show H(Y S ⊗Q N ) is an almost artinian GS-module. ��
Proof of Proposition A.1 Regard M as a DG module concentrated in degree 0 via restriction of
scalars along the augmentation. Gulliksen shows in [10, Lemma 2.4] how to construct a DG
module L over K and a map L → M of DG modules such that L is free over the graded ring
underlying K and the map L → M is a quasi-isomorphism. Note that L → M is, in particu-
lar, a resolution of M by free Q-modules. Moreover, Gulliksen shows [10, Lemma 2.6] that
the projection map L � L/I L = L ⊗K R is a quasi-isomorphism where I = ker(K � R)

is the augmentation ideal. In particular, this means that L/I L is an R-free resolution of M .
We therefore obtain the isomorphisms

Hi (L ⊗Q N ) ∼= TorQ
i (M, N ) and Hi (L/I L ⊗R N ) ∼= TorR

i (M, N )

for any R-module N .
Lemma A.6 now applies to prove that

⊕
i TorR

i (M, N ) is almost artinian as a R[X1, . . . ,

Xc]-module. Finally, Avramov and Sun [4, §4] prove that the Xi ’s as constructed by Gulliksen
agree with the Eisenbud operators, up to a sign. ��
Acknowledgments We thank the referee for helpful comments regarding this paper.
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