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ON THE DISCRIMINANT OF TWISTED TENSOR PRODUCTS

JASON GADDIS, ELLEN KIRKMAN, W. FRANK MOORE

Abstract. We provide formulas for computing the discriminant of noncommutative algebras over central

subalgebras in the case of Ore extensions and skew group extensions. The formulas follow from a more

general result regarding the discriminants of certain twisted tensor products. We employ our formulas to

compute automorphism groups for examples in each case.

1. Introduction

Throughout k is an algebraically closed, characteristic zero field and all algebras are k-algebras. All

unadorned tensor products should be regarded as over k. Given an algebra R, we denote by R× the set of

units in R. If σ ∈ Aut(R), then Rσ denotes the subalgebra of elements of R that are fixed under σ. We

denote the center of R by C(R).

Automorphism groups of commutative and noncommutative algebras can be notoriously difficult to com-

pute. For example, Aut(k[x, y, z]) is not yet fully understood. In [2], the authors give a method for determin-

ing the automorphism groups of noncommutative algebras using the discriminant. This was studied further

in [3, 4, 5, 6]. Discriminants of deformations of polynomial rings were computed using Poisson geometry in

[11, 13].

We refer the reader to [2] for the general definitions of trace and discriminant in the context of noncommu-

tative algebras. We review the definitions only in the case that B is an algebra finitely generated free over

a central subalgebra R ⊆ C(B) of rank n.

Left multiplication defines a natural embedding lm : B → EndC(B) ∼= Mn(R). The usual matrix trace

defines a map trint : Mn(R) → R called the internal trace. The regular trace is defined as the composition

trreg : B
lm−→Mn(R)

trint−−−→ R. For our purposes, tr will be trreg.

Let ω be a fixed integer and Z := {zi}ωi=1 a subset of B. The discriminant of Z is defined to be

dω(Z) = det(tr(zizj))ω×ω ∈ R.

If Z is an R-basis of B, then the discriminant of B over R is defined to be

d(B/R) =R× dω(Z),

where x =R× y means x = cy for some c ∈ R×.

The discriminant is independent of R-linear bases of B [2, Proposition 1.4]. Moreover, if φ ∈ Aut(B) and

φ preserves R, then φ preserves the ideal generated by d(B/R) [2, Lemma 1.8].
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Computing the discriminant is a computationally difficult task, even for algebras with few generators. For

example, the matrix obtained from tr(zizj) for the skew group algebra k−1[x1, x2, x3]#S3 has size 288×288.

Our first goal is to provide methods for obtaining the discriminant in cases where the algebra may be realized

as an extension of a smaller algebra where computations may be easier.

If A is an algebra and σ ∈ Aut(A), then the Ore extension A[t;σ] is generated by A and t with the rule

ta = σ(a)t for all a ∈ A.

Theorem 1 (Theorem 6.1). Let A be an algebra and set S = A[t;σ], where σ ∈ Aut(A) has order m < ∞
and no σi, 1 ≤ i < m, is inner. Suppose R ⊆ C(S) and set B = R∩Aσ. If A is free over B of rank n, then

d(S/R) =R× (d(A/B))
m (

tm−1
)mn

.

We say an automorphism σ of A is inner if there exists a ∈ A such that xa = aσ(x) for all x ∈ A. This is

not the standard definition of an inner automorphism but it agrees if a is a unit because then a−1ba = σ(b).

Since a is normal and assuming A is a domain, one can localize at the Ore set of powers of a so as to get

an inner automorphism in A[a−1]. When σk is an inner automorphism for some 1 ≤ k < m = |σ| then the

center of A[t;σ] can be larger than (C(A) ∩Aσ)[tm]. We denote the set of all inner automorphisms of A by

Inn(A). It is a routine verification that Inn(A) forms a subgroup of Aut(A).

Let A be an algebra and G a finite group that acts on A as automorphisms. Denote by kG the group

algebra of G. The skew group algebra A#G has the underlying set A⊗ kG and multiplication defined by

(a⊗ g)(b ⊗ h) = a(g.b)⊗ gh for all a, b ∈ A, g, h ∈ G.

The natural embedding

A→ A#G

a 7→ a⊗ e

where e is the identity of G, allows us to identify A with its image in A#G. If G contains no non-identity

inner automorphisms and acts faithfully on A, then by Lemma 2.2, C(A#G) = C(A)G under the above

identification.

Theorem 2 (Theorem 7.1). Let A be an algebra and G a finite group that acts on A as automorphisms

such that no non-identity element of G is inner. Set S = A#G and identify A with its image under the

embedding a 7→ a⊗ e. Suppose A is a finitely generated free over R ⊆ C(A)G. Then

d(S/R) =R× d(A/R)|G|.

The condition that A is a finitely generated free R-module is satisfied in case A is a commutative polyno-

mial ring and G is a group generated by reflections by the classical results of Chevalley [7] and Shephard-Todd

[14]. Section 4 is devoted to showing that such discriminants may be computed in a manner similar to the

discriminant of an algebraic number field; see Proposition 4.3.
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Both Ore extensions (by an automorphism) and skew group algebras are examples of twisted tensor

products. We prove a more general formula regarding discriminants of certain twisted tensor products from

which the two previous theorems follow in Section 5. The necessary background for these results is in Sections

2 and 3. We then apply this result to the case of Ore extensions (Section 6) and skew group algebras (Section

7), as well as provide examples of each.

Finally, in Section 8 we use the results on discriminants to compute the automorphism groups of some

Ore extensions and skew group algebras. Each section contains several examples using these formulas

to compute discriminants. Many computations herein were assisted by routines in Macaulay2 using the

NCAlgebra package1.

2. Twisted tensor products and monoid algebras

Let A and B be algebras and let τ : B⊗A→ A⊗B be a k-linear homomorphism subject to the conditions

that τ(b⊗ 1A) = 1A ⊗ b and τ(1B ⊗ a) = a⊗ 1B, a ∈ A, b ∈ B. A multiplication on A⊗B is then given by

µτ := (µA ⊗ µB) ◦ (idA⊗τ ⊗ idB) where µA and µB are the multiplication maps on A and B, respectively.

By [1, Proposition 2.3], µτ is associative if and only if τ ◦ (µB ⊗µA) = µτ ◦ (τ ⊗ τ) ◦ (idB ⊗τ ⊗ idA) as maps

B⊗B⊗A⊗A→ A⊗B. The triple (A⊗B, µτ ) is a twisted tensor product of A and B, denoted by A⊗τ B.

We are concerned with twisted tensor products when B is the monoid algebra of a monoid M that acts

on A as automorphisms. Let M be a monoid and ρ : M −→ Aut(A) a monoid homomorphism (so that

ρ(mm′) = ρ(m)ρ(m′) and ρ(eM ) = idA where eM denotes the identity of M). For m ∈ M and a ∈ A, we

write ma for ρ(m)(a). For a monoid M , we let C(M) denote the center of M .

In this case, one may check that since ρ is a homomorphism, the assignment

τ : k[M ]⊗A −→ A⊗ k[M ]

m⊗ a 7→ ma⊗m

extends linearly to a k-linear map that makes the multiplication µτ associative. We will denote such a

twisted tensor product by A⊗τ k[M ] when the homomorphism ρ : M −→ Aut(A) is understood. We identify

the elements of A, k[M ] and M with their images in A⊗τ k[M ] under the canonical embeddings

A −→ A⊗τ k[M ]←− k[M ]←−M.

For such an action of a monoid M on an algebra A, we let AM denote the set

AM = {a ∈ A | ma = a for all m ∈M}.

It is easy to check that AM is a subalgebra of A. Furthermore, since the center of an algebra is preserved

under any automorphism, M acts on C(A) as well, so one may also consider C(A)M .

1Available at http://users.wfu.edu/moorewf.
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Remark 2.1. The two main applications of interest are Ore extensions (by an automorphism) and skew

group algebras, and each fit into this framework. In the case of an Ore extension A[t;σ] for an automorphism

σ of A, A[t;σ] ∼= A ⊗τ k[N] where ρ : N −→ Aut(A) sends 1 to σ. Similarly, a finite group G acting on

A as automorphisms is the same as a group homomorphism ρ : G −→ Aut(A), and one may check that

A#G = A⊗τ k[G].

To better explain some of the hypotheses we will need in our theorem regarding discriminants of twisted

tensor products, we must discuss the center of A⊗τ k[M ].

Lemma 2.2. Let A be an algebra, M a monoid that acts on A through the monoid homomorphism ρ :

M −→ Aut(A), and H = ker ρ. Suppose that H ⊆ C(M) and im ρ∩ Inn(A) = {idA}. Then C(A⊗τ k[M ]) =

C(A)M ⊗ k[H ].

Proof. Let T = A⊗τ k[M ] and choose
∑

m∈M am ⊗m ∈ C(T ). Then for all x ∈ A we have
(

∑

m∈M

am ⊗m

)

(x ⊗ eM ) =
∑

m∈M

am(mx)⊗m.

On the other hand,

(x ⊗ eM )

(

∑

m∈M

am ⊗m

)

=
∑

m∈M

xam ⊗m.

Since M acts as automorphisms, each nonzero am is a normal element corresponding to the automorphism

induced by m. This implies that if am 6= 0, then m induces an inner automorphism of A, and hence by

hypothesis m ∈ ker ρ. Note that in this case it also follows that am ∈ C(A), so that each term in the sum
∑

m∈M am ⊗m has am ∈ C(A) and m ∈ H .

Now for all m′ ∈M , one has
(

∑

m∈H

am ⊗m

)

(1 ⊗m′) =
∑

m∈M

am ⊗mm′.

On the other hand,

(1⊗m′)

(

∑

m∈H

am ⊗m

)

=
∑

m∈M

m′am ⊗m′m

=
∑

m∈M

m′am ⊗mm′

where the second equality follows since H ⊆ ker ρ. Therefore we have that m′am = am for all m′ ∈M , hence

am ∈ C(A)M . The claim now follows. �

We note that the hypothesis H ⊆ ker ρ in Lemma 2.2 is trivially satisfied when M is a group and M acts

faithfully on A (as is the case in most skew group algebra computations), as well as when N acts on A as an

automorphism σ (as in the Ore extension case).
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The hypothesis im ρ∩ Inn(A) = {idA} is a bit more restrictive however. Indeed, extending Lemma 2.2 to

the case where a non-identity element of M acts as an inner automorphism is nontrivial in general, but can

be done for an Ore extension of a domain. For an automorphism σ of A we define

N(σ) = {a ∈ Aσ : xa = aσ(x) for all x ∈ A}.

Note that N(σ) = {0} when σ is not an inner automorphism induced by an element of Aσ, N(1A) =

Aσ ∩ C(A), and if |σ| = m then N(σℓ) = N(σi), where ℓ ≡ i mod m.

Lemma 2.3. Let A be a domain, σ an automorphism of A with |σ| = m, and set S = A[t;σ]. Then

C(S) = ⊕N(σi)[ti], where N(σi) is nonzero if σi an inner automorphism induced by an element of Aσ.

Proof. The containment ⊇ is clear, so suppose
∑

ait
i ∈ C(S); then by the t-grading, ait

i ∈ C(S) for each i.

Hence,
(

∑

σ(ai)t
i
)

t = t
(

∑

ait
i
)

=
(

∑

ait
i
)

t.

Thus σ(ai) = ai for each i, and ai ∈ Aσ. For ait
i ∈ C(S) and any b ∈ A, we have bait

i = ait
ib = aiσ

i(b)ti.

Because S is a domain, then bai = aiσ
i(b) for all i, and ai ∈ N(σi). Hence, for i 6≡ 0 mod m we have that

σi is a non-identity inner automorphism induced by ai. �

Before closing this section, we will need a lemma that characterizes when an extension of a monoid algebras

is a free extension. Before stating the lemma, we need a definition.

Definition 2.4. A monoid M is left cancellative provided for all a, b, c ∈ M , the equality ab = ac implies

that b = c. One similarly defines right cancellative monoid, and M is called cancellative if M is both left and

right cancellative.

Lemma 2.5. Let H be a submonoid of a cancellative monoid M , and let B = {m1, . . . ,mℓ} be a subset of M .

Then B is a basis of k[M ] as a left (respectively right) k[H ]-module if and only if the right (respectively left)

cosets of H represented by all the elements of B are disjoint, and M is the union of the right (respectively

left) cosets of H represented by all the elements of B.

Proof. Note that B is a basis of k[M ] as a left k[H ]-module if and only if for each m ∈ M there exists a

unique h ∈ H and 1 ≤ i ≤ ℓ such that m = hmi. This is precisely the statement that the right cosets of H

by all the elements of B are disjoint and cover M . �

A source of examples of cancellative monoids are submonoids of groups. We record here a lemma that we

will use later regarding extensions of monoid algebras in this context.

Lemma 2.6. Let M be a monoid which embeds in a group G, K a group, ρ : G −→ K a group homomor-

phism, and H = ker ρ ∩M . Suppose that, for all g ∈ ker ρ, one has g ∈M or g−1 ∈M . Then:
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(a) For all m1,m2 ∈ M , ρ(m1) = ρ(m2) if and only if either Hm1 ⊆ Hm2 or Hm2 ⊆ Hm1, and similarly

for left cosets.

(b) Suppose that k[M ] is a free left or right k[H ]-module with basis {m1, . . . ,mℓ} with mi ∈M and m1 = eM .

Then for every j = 1, . . . , ℓ, there exists a unique i such that mimj ∈ H.

Proof. We prove each of the claims in the case of right cosets and a left module structure as in Lemma 2.5.

It is easy to see that either containment of cosets above implies ρ(m1) = ρ(m2). Conversely, suppose that

ρ(m1) = ρ(m2). Then m1m
−1
2 ∈ ker ρ so by hypothesis either m1m

−1
2 ∈ H or m2m

−1
1 ∈ H . In the first case,

one has Hm1 ⊆ Hm2 and in the second case, one has Hm2 ⊆ Hm1, proving part (a).

For the second claim, Lemma 2.5 shows that given any element m ∈M , there exists a unique i such that

m ∈ Hmi. We will denote the assignment m 7→ mi by the notation rep(m). Fix a j = 1, . . . , n and consider

the following function defined on the cosets of the basis in the hypothesis:

Φj : {Hm1, . . . , Hmℓ} → {Hm1, . . . , Hmℓ}

Hmi 7→ H rep(mimj).

Suppose that Φj(mi) = Φj(mi′ ). Then one has that mimj and mi′mj are in the same coset Hmk for some

k. It follows that ρ(mi) = ρ(mi′) and hence by part (a) one has that Hmi and Hmi′ intersect nontrivially.

Therefore by Lemma 2.5 one has mi = mi′ . This shows that Φj is one-to-one and hence onto. Since we chose

m1 = eM , one of the cosets is H hence given any j, there is a unique i such that mimj ∈ H as claimed. �

Note that N is a submonoid of the group Z that intersects every subgroup of Z nontrivially, and hence fits

into the framework of each of the two previous lemmas. Furthermore, if M is a group then each of the two

lemmas’ hypotheses hold trivially. Therefore, these hypotheses are not restrictive from the point of view of

our intended applications.

3. Background on discriminants

In this section, we assume that A/B be a free extension of algebras with B ⊆ C(A).

Notation 3.1. Suppose σ ∈ Aut(A) and that σ restricts to the identity on B. Then σ : A −→ A is a

B-module homomorphism. Therefore, given a basis {x1, . . . , xg} of A as a B-module, we can represent σ

using a matrix with entries in B which we denote Xσ. That is, if x ∈ A and the coordinate vector of x with

respect to the chosen basis is x, then σ(x) = Xσx. Note that the determinant of Xσ is independent of the

chosen basis of A over B, and is an element of B×. We therefore denote detXσ by detA/B σ.

If ρ : M −→ Aut(A) is a monoid homomorphism and m ∈ M , we write Xm and detA/B m to denote

Xρ(m) and detA/B ρ(m), respectively.
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In the following definition we consider σ ∈ Aut(A) that restricts to the identity on B to twist the standard

trace pairing. This will be necessary for our calculations that appear in Section 5. Recall that for an algebra

A, we use µA to denote multiplication on A.

Definition 3.2. Let σ ∈ Aut(A) such that σ restricts to the identity on B. Define the trace form of the

extension A/B twisted by σ (denoted trA/B,σ) to be the B-bilinear pairing given by the composition

trA/B,σ : A×A
idA ×σ−−−−→ A×A

µA−−→ A
tr−→ B.

That is, trA/B,σ(y, z) = tr(yσ(z)). In the case σ = idA, we use trA/B to denote trA/B,idA
.

Note that trA/B,σ(y, z) = trA/B,σ(σ(z), σ
−1(y)), so that this bilinear pairing need not be symmetric for a

general σ, but it is symmetric if σ = idA.

Notation 3.3. Given a basis {x1, . . . , xg} of A as a B-module, the matrix of trA/B,σ with respect to this

basis is Wσ = (tr(xiσ(xj)))ij . In this way, if y and z have representatives in the above basis given by vectors

y and z, then trA/B,σ(y, z) = y
TWσz. We let W denote the matrix WidA

.

Definition 3.4 ([2]). For a free extension A/B, we define the discriminant of A over B to be determinant

of the matrix W representing the trace pairing trA/B with respect to some chosen basis of A over B, as in

Notation 3.3.

Lemma 3.5. Let A/B be a free extension of algebras, let σ ∈ Aut(A) restrict to the identity on B, and

let {x1, . . . , xg} be a basis of B over A. Then using the same notation appearing in 3.1 and 3.3, one has

Wσ = WXσ and therefore det(Wσ) = det(W ) detA/B σ.

Proof. Let y and z be elements of A, with representations y and z in the chosen basis, respectively. Then

since trA/B,σ = trA/B ◦(idA×σ) one has the following string of equalities from which the claim follows:

trA/B,σ(y, z) = trA/B(y, σ(z)) = yWXσz. �

4. Discriminants and reflections

In this section, we collect some results from classical commutative invariant theory that we will need for

our examples. We prove that when G is a group generated by reflections acting on the polynomial ring

A = k[x1, . . . , xn], the discriminant of the extension A/AG may be computed in a manner similar to the

formula for the discriminant of an algebraic number field, c.f. [12, Proposition 2.26]. Recall that our field k

is of characteristic zero.

Let σ ∈ GLn(k). Recall that σ is a reflection if σ is of finite order and fixes a codimension one subspace

of the vector space of linear forms in A. Denote the quotient field of a domain A by Q(A).

Theorem 4.1. Let A = k[x1, . . . , xn] and G ⊆ GLn(k) a finite group generated by reflections that acts on

A as automorphisms. Then:
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(1) The invariant ring AG = k[f1, . . . , fn] is a graded subalgebra of A, with the fi algebraically indepen-

dent.

(2) One has
∏

i

deg(fi) = |G|.

(3) A is free as an AG-module of rank |G|.
(4) Q(AG) = Q(A)G, where the action of G on Q(A) is induced from the action of G on A.

Proof. The first claim is the Shephard-Todd-Chevalley theorem. The second claim is well-known, see [15,

Corollary 4.4]. The third claim follows from a Hilbert series computation, and the last statement follows

from considering the Galois extension Q(A)/Q(A)G. �

Lemma 4.2. Let A = k[x1, . . . , xn] and G ⊆ GLn(k) a finite group generated by reflections that acts on A

as automorphisms. Then for all f ∈ A, one has

trA/AG

(f) = trQ(A)/Q(AG)(f) =
∑

σ∈G

σ(f).

Proof. The extension Q(A)/Q(A)G = Q(A)/Q(AG) is Galois, and hence we have that the usual trace map

trQ(A)/Q(AG) f =
∑

σ∈G

σ(f) ∈ Q(AG)

may be computed by the trace of the Q(AG)-linear map θ
Q(A)
f : Q(A) −→ Q(A) given by multiplication by

f . Since for all f ∈ A, one has θ
Q(A)
f = θAf ⊗AG Q(AG), we have the desired result. �

The following proposition is useful in computations involving discriminants of extensions of commutative

polynomial rings, since in practice the matrix W from Notation 3.3 can be time-consuming to obtain directly.

This result is reminiscent of the formula for the discriminant of an algebraic number field K in terms of the

square of the determinant of the matrix whose entries correspond to the evaluations of an integral basis of

OK at the different embeddings of K into C.

Proposition 4.3. Let A = k[x1, . . . , xn] and G = {σ1, . . . , σg} ⊆ GLn(k) a finite group generated by

reflections. Let {z1, . . . , zg} be a basis of A as an AG-module, W be the matrix of the trace form of the

extension A/AG with respect to this basis, and let M be the matrix (σi(zj)). Then W = MTM . As a

consequence, one has d(A/AG) = (detM)2.

Proof. One has that

(MTM)ij =
∑

k

σk(zi)σk(zj) =
∑

k

σk(zizj) = tr(zizj) = Wij .

The claim regarding the discriminant of the extension A/AG follows since detW = d(A/AG). �

We record a corollary of this proposition when G is generated by a single reflection for later use.
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Corollary 4.4. Let A = k[x1, . . . , xn] and let σ be a reflection of order m. Let Aσ be the set of elements of

A left invariant by σ, and let f be a linear form such that σ(f) = ξf for some primitive mth root of unity ξ.

Then d(A/Aσ) =k× f (m−1)m.

Proof. After a change of variable, we have A = k[f, y2, . . . , yn] with σ(f) = ξf and σ(yi) = yi. There-

fore, Aσ = k[fm, y2, . . . , yn] and hence a basis for A over Aσ is {1, . . . , fm−1}. The matrix M from the

above proposition is therefore a Vandermonde matrix on the elements {f, ξf, ξ2f, . . . , ξm−1f}. Therefore by
Proposition 4.3 we have that

detW =





∏

i<j

(ξif − ξjf)





2

=k× f2(m2 ) = f (m−1)m. �

Corollary 4.5. Let S be an algebra, A = S[t], and R = S[tm], m ∈ Z>0. Then d(A/R) =k× (tm−1)m.

Proof. This follows by applying Corollary 4.4 to the automorphism σ of A defined by σ(t) = ξt where ξ is a

primitive mth root of unity. �

Example 4.6. Let A = k[x1, x2, x3] and G = S3, the symmetric group acting as permutations of xi. A

basis for A over AG is {1, x1, x2, x
2
1, x1x2, x

2
1x2} (this is well-known, see e.g. [10, Proposition V.2.20]). Let

M = (σi(zj)) so that

M =





























1 x1 x2 x2
1 x1x2 x2

1x2

1 x2 x1 x2
2 x1x2 x1x

2
2

1 x3 x2 x2
3 x2x3 x2x

2
3

1 x1 x3 x2
1 x1x3 x2

1x3

1 x2 x3 x2
2 x2x3 x2

2x3

1 x3 x1 x2
3 x1x3 x1x

2
3





























.

It can be checked that the determinant of M is the cube of the Vandermonde determinant on the set

{x1, x2, x3} and so it follows from Proposition 4.3 that

d(A/AG) =





∏

i<j

(xi − xj)





6

.

In light of the Example 4.6, we conjecture that the following question has an affirmative answer.

Question 4.7. Suppose G = Sn acts on A = k[x1, . . . , xn] as permutations. Is the discriminant of A over

AG the Vandermonde determinant on {x1, . . . , xn} to the power n!?

5. Discriminants of twisted tensor products

In this section, we prove the main theorem that allows us to calculate discriminants for certain Ore

extensions and skew group algebras.
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Theorem 5.1. Let A be an algebra, M a submonoid of a group G, and suppose ρ : G −→ Aut(A) is a group

homomorphism such that im(ρ|M )∩ Inn(A) = {idA} and H := ker ρ∩M ⊆ C(M). Set T = A⊗τ k[M ], and

suppose R ⊆ C(T ) is a subalgebra such that:

(a) A is free over A ∩R of rank n <∞,

(b) R = (A ∩R)⊗ k[H ], and

(c) There exists a basis {x1, . . . , xℓ} of k[M ] over k[H ] with x1 = eM and xi ∈M (c.f. Lemma 2.5).

Then:

d(T/R) =
(

d(A/A ∩R)
)ℓ (

d(k[M ]/k[H ])
)n

.

Remark 5.2. Note that since R ⊆ C(A⊗τ k[M ]) and C(A⊗τ k[M ]) = C(A)M ⊗ k[H ] by Lemma 2.2, one

has A ∩R = C(A)M ∩R.

Before giving the proof of Theorem 5.1, we need one more lemma:

Lemma 5.3. Under the hypotheses of Theorem 5.1, for all a ∈ A and m ∈M , one has

tr(a⊗m) =











tr(a)⊗ tr(m) if m ∈ H

0 otherwise.

Proof. Let B = A ∩R = C(A)M ∩R, and let {x1, . . . , xn} be a basis of A over B. Then

{xi ⊗mj | 1 ≤ i ≤ n and 0 ≤ j ≤ ℓ− 1}

is a basis of T over R. Recall that for a fixed 1 ≤ α ≤ n and 1 ≤ β ≤ n, one has

(5.4) (a⊗m)(xα ⊗mβ) = a(mxα)⊗mmβ .

Consider the coefficient cαβ ∈ R of xα ⊗mβ when writing the product in (5.4) in the {xi ⊗mj} basis. If

cαβ 6= 0, then hypothesis (b) implies that cαβ would have a summand of the form a′ ⊗m′ for some m′ ∈ H

such that mmβ = m′mβ. Since M is cancellative, one has m ∈ H .

For the case m ∈ H , write axα =
∑n

i=1 riαxα for some riα ∈ A ∩ R and mmβ =
∑ℓ

j=1 r
′
jβmβ for some

r′jβ ∈ k[H ]. Then one has

(a⊗m)(xα ⊗mβ) = axα ⊗mmβ

=
n
∑

i=1

ℓ
∑

j=1

(riα ⊗ r′jβ)(xi ⊗mj).

Therefore the trace of the map given by left multiplication of a⊗m satisfies

tr(a⊗m) =

n
∑

α=1

ℓ
∑

β=1

(rαα ⊗ r′ββ) =
(

n
∑

α=1

rαα

)

⊗
(

ℓ
∑

β=1

r′ββ

)

= tr(a)⊗ tr(m). �
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Proof of Theorem 5.1. Using the same notation in the proof of Lemma 5.3, we have that

{xi ⊗mj | 1 ≤ i ≤ n and 0 ≤ j ≤ ℓ− 1}

is a basis of T over R. List this basis in the order

{x1 ⊗m1, . . . , xn ⊗m1, x1 ⊗m2, . . . , xn ⊗m2, . . . , x1 ⊗mℓ, . . . , xn ⊗mℓ}.

One may then think of the trace matrix corresponding to this ordered basis of T over R as a m ×m block

matrix with blocks of size n× n, where the block is determined by index on the {mj} basis used.
Since (xi ⊗mj)(xi′ ⊗mj′) = xi(mjxi′) ⊗mjmj′ , Lemma 5.3 shows that the (j, j′)th block entry is the

zero matrix whenever mjmj′ 6∈ H . By Lemma 2.6 there is exactly one mj′ such that mjmj′ ∈ H . In

addition, one has that when mjmj′ ∈ R ∩M , then in the notation of Lemma 5.3 the (j, j′)th block entry is

Wmj
tr(mjmj′ ). By Lemma 3.5 we have that the determinant of Wmj

is (up to a unit in B) the determinant

of the matrix W of the trace form of A over B, which by definition is the discriminant d(A/B).

Therefore up to a unit in B, the determinant of the matrix of the trace form of T over R is the determinant

of the matrix that is the tensor product of the matrices of the trace forms of A over B and of k[M ] over k[H ].

The claim now follows from the usual formula for the determinant of a tensor product of two matrices. �

Example 5.5. Let A = k[x1, . . . , xn] and σ ∈ Aut(A) defined by σ(x1) = ξx1, ξ a primitive sixth root of

unity, and σ(xi) = xi for i = 2, . . . , n. Then Aσ = k[x6
1, x2, . . . , xn] and d(A/Aσ) = x30

1 by Corollary 4.4.

Let ρ : N → Aut(A) be the monoid homomorphism sending 1 to σ as in Remark 2.1 and let M be the

submonoid of N generated by {2, 3}. By restriction, ρ : M → Aut(A) satisfies ker ρ = {6k | k ∈ N} ⊆ C(M)

and im ρ ∩ Inn(A) = {idA}. Clearly, k[M ] ∼= k[t2, t3] and k[H ] ∼= k[t6]. A basis for k[t2, t3] as a module over

k[t6] is {1, t2, t3, t4, t5, t7} and a direct computation shows that d(k[M ]/k[H ]) =k× t42.

Consider the twisted tensor product T = A⊗τ k[t
2, t3] and let R = Aσ ⊗ k[t6]. By Theorem 5.1, we have

d(T/R) = d(A/Aσ)6(d(k[M ]/k[H ]))6 =k× (x30
1 t42)6.

6. Discriminants of Ore extensions

In this section, we apply Theorem 5.1 to the case of an Ore extension. Recall that by Remark 2.1, Ore

extensions are a special case of the twisted tensor products studied in Sections 2 and 5.

Theorem 6.1. Let A be an algebra and set S = A[t;σ], where σ ∈ Aut(A) has order m < ∞ and no σi,

1 ≤ i < m, is inner. Suppose R ⊆ C(S) and set B = R ∩ Aσ. If A is free over B of rank n, then

d(S/R) =R× (d(A/B))m
(

tm−1
)mn

.

Proof. We claim that the hypotheses satisfy those of Theorem 5.1. We view N as a submonoid of the additive

group of the integers and ρ : Z→ Aut(A) as the group homomorphism sending 1 to σ. Then S ∼= A⊗τ k[N].

Since σi is not inner for any i 6= km, k ∈ Z, then im(ρ |N) ∩ Inn(A) = {idA} and ker ρ = {km | k ∈ Z}.
11



Set H = ker ρ ∩ N = {km | k ∈ N}, then {1, . . . ,m − 1} is a basis for k[N] over k[H ] implying Theorem

5.1 (c). The hypothesis that A is free over B of rank n is equivalent to Theorem 5.1 (a). By Lemma 2.2,

R = B[tm] = (A ∩ R) ⊗ k[H ] Hence, Theorem 5.1 (b) is satisfied. The formula now follows from Theorem

5.1 and Corollary 4.5. �

Corollary 6.2. Let A = k[x1, . . . , xn] and σ be a reflection of order k. Let f be a linear form that satisfies

σ(f) = ξf where ξ is a primitive kth root of unity. Then the discriminant of the Ore extension A[t;σ] is (up

to scalar) f (k−1)k2

t(k−1)k2

.

Proof. This follows from applying Corollaries 4.4 and using the Ore extension discriminant formula from

Theorem 6.1. �

As test cases, we consider Ore extensions of the ordinary polynomial ring, the (−1)-skew polynomial ring

Vn = k−1[x1, . . . , xn],

and the (−1)-skew Weyl algebra

Wn = k〈x1, . . . , xn | xixj + xjxi = 1 for i 6= j〉.

Note that gr(Wn) = Vn.

Example 6.3 ([2, Example 1.7]). V2 is the Ore extension k[x][y;σ] where σ(x) = −x and C(V2) = k[x2, y2].

Clearly k[x] is free over k[x]σ = k[x2] and d(k[x]/k[x2]) =k× x2 by Corollary 4.5. By Theorem 6.1,

d(V2/C(V2)) =k× (x2)2(y)4 = x4y4.

Example 6.4. By [2, Lemma 4.1 (3)],

C(Vn) =











k[x2
1, . . . , x

2
n] if n is even

k[x2
1, . . . , x

2
n,
∏

i xi] if n is odd.

Set Cn = k[x2
1, . . . , x

2
n] regardless of whether n is even or odd. In either case, Vn is finitely generated free

over Cn; this is proved in [2, Lemma 4.1 (4)] for n even but the proof applies equally well when n is odd.

However, in the case n is odd we do not obtain useful information about the automorphism group of Vn

because a given automorphism may not fix Cn. Regardless, we use Theorem 6.1 to inductively compute

d(Vn/Cn) =k×

(

n
∏

i=1

x2
i

)2n−1

.(6.5)

This gives an alternate method for obtaining the discriminant in [2, Theorem 4.9 (1)].

The case n = 2 follows from Example 6.3. Suppose (6.5) holds for some n and set S = Vn[xn+1;σ] where

σ(xi) = −xi for i = 1, . . . , n. If n is odd, then σ does not fix
∏

i xi. Hence, C(Vn) ∩ V σ
n = Cn in both cases
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when n is even or odd, and Vn is finitely generated free over Cn of rank 2n. Thus, by Theorem 6.1,

d(S/Cn+1) = d(Vn/Cn)
2(2xn+1)

2·2n =k×

(

n+1
∏

i=1

x2
i

)2n

.

Example 6.6. Let A = k[x, y] and σ ∈ Aut(A) defined by σ(x) = y and σ(y) = x. Let S = A[t;σ].

We have |σ| = 2 and σ is not an inner automorphism. Since A is commutative, C(A)σ = Aσ = k[x+y, xy].

Thus C(S) = Aσ[t2]. A basis for A over Aσ is {1, x}. An easy computation shows that

tr(1) = 2, tr(x) = x+ y, tr(x2) = x2 + y2.

Thus, the trace matrix for A over Aσ is




2 x+ y

x+ y x2 + y2





and so d(A/Aσ) = (x− y)2. By Theorem 6.1,

d(S/C(S)) =k×

(

(x − y)2
)2 (

t2
)2

= (x− y)4t4.

The discriminant of S/C(S) is not dominating in the sense of [2, Definition 2.1].

The discriminant computation above can also be seen by observing that S ∼= k(pi,j)[x1, x2, x3] where

p2,3 = p3,2 = −1 and all other pi,j = 1. The isomorphism is given by x1 ↔ x + y, x2 ↔ x − y, and

x3 ↔ t. S is free over its center C(S) = k[x1, x
2
2, x

2
3], and the discriminant (up to a constant) is D = x4

2x
4
3

[4, Proposition 2.8].

Question 6.7. If we instead take σ ∈ Aut(V2) given by σ(x) = −y, σ(y) = x and set S = A[t;σ] so that S

satisfies

xy = −yx, tx = yt, ty = −xt,

what is the discriminant d(S/C(S))?

Changing to generators that include the eigenvectors of σ does not give a skew-polynomial ring (as it

did in the previous example). Because σ2 is inner, Theorem 6.1 does not apply. In particular, C(S) =

k[x2 + y2, x2y2, xyt2, t4] is not a UFD.

We are interested in the Ore extension W2[t;σ] with σ(x) = y and σ(y) = x. Because gr(W2) = V2,

the discriminant d(V2/C(V2)
σ) is a filtered version of the discriminant of d(W2/C(W2)

σ). The Macaulay2

routines are not currently equipped to handle the computations for this discriminant. Instead, we pass to

the homogenization of W2.

Given f ∈ k〈x1, . . . , xn〉, define deg(f) by total degree with deg(xi) ∈ Z+ If f =
∑d

i=0 fk where fk is

the homogeneous component of f with deg(fk) = k, fd 6= 0, then the homogenization of f by the central

indeterminate t is then H(f) =
∑

fkt
d−k where d = deg(f). It is clear that H(f) is homogeneous.
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Suppose A is an algebra generated by {x1, . . . , xn} subject to the relations r1, . . . , rm and such that

deg(xi) > 0. The homogenization H(A) of A is the algebra on the generators {t, x1, . . . , xn} subject to the

homogenized relations H(ri), i = 1, . . . ,m, as well as the additional relations txj − xjt, 1 ≤ j ≤ n.

Theorem 6.8. Suppose A is an algebra generated by {x1, . . . , xn} subject to the relations r1, . . . , rm and

such that deg(xi) > 0. If A is finitely generated free over R ⊆ C(A), then H(A) is finitely generated free

over H(R) and

d(H(A)/H(R)) =(H(R))× H(d(A/R)).

Proof. Suppose A (and hence H(A)) is generated in degree 1. This is easily generalized to other cases. There

is an isomorphism H(A)[t−1]→ A[t±1] fixing t and for i = 1, . . . , n, xi 7→ t−1xi. By [6, Lemma 1.3] and [2,

Lemma 3.1]

d(H(A)[t±1]/R[t±1]) =(R[t±1])× d(A[t]/R[t]) =(R[t])× d(A/R).

Tracing back through the isomorphism and clearing fractions gives the result. �

Example 6.9. Let A = W2, the 2-dimensional (−1)-quantum Weyl algebra A = k〈x, y | xy+ yx = 1〉. Note
that C(A) = k[x2, y2]. By [6, Theorem 0.1], d(A/C(A)) =k×

(

4x2y2 − 1
)2
.

It follows from [9, Proposition 2.8] that C(H(A)) = k[x2, y2, t]. Hence, by Theorem 6.8

d(H(A)/C(H(A))) =k×

(

4x2y2 − t4
)2

.

Example 6.10. Let A be as in the previous example and let σ be the automorphism x↔ y. Then gr(A) = V2

and C(A) = C(V2) = k[x2, y2]. Moreover, C(A)σ = C(V2)
σ = k[x2 + y2, x2y2]. Extend σ to H = H(A) by

σ(t) = t. Then C(H)σ = k[x2 + y2, x2y2, t] so rank(A/C(A)σ) = rank(H/C(H)σ) = 8. Let X = x2 + y2,

Y = x2y2, and T = t. Then

d(H/C(H)σ) =k× (4Y − T 4)4(X2 − 4Y 4)4.

By [4, Proposition 4.7],

d(A/C(A)σ) =k× (4Y − 1)4(X2 − 4Y 4)4, and

d(V2/C(V2)
σ) =k× Y 4(X2 − 4Y 4)4.

7. Skew group algebras

We identify A with its image in A#G under the embedding a 7→ a⊗ e.

Theorem 7.1. Let A be an algebra and G a finite group that acts on A as automorphisms such that no

non-identity automorphism is inner. Set S = A#G and identify A with its image under the embedding

a 7→ a⊗ e. Suppose A is free over R ⊆ C(A)G. Then

d(S/R) =R× d(A/R)|G|.

14



Proof. This follows almost immediately from Theorem 5.1. By hypothesis, there is a map ρ : G→ Aut(A),

im ρ ∩ Inn(A) = {idA}, and H = ker ρ = {eG}. Our hypotheses directly imply (a) and (b) in Theorem 5.1.

Because the elements of G form a basis of k[G], we have ℓ = |G|. �

Example 7.2. Let A = k[x1, x2, x3] and G = S3, the symmetric group acting as permutations of xi. By

Example 4.6,

d(A/AG) =





∏

i<j

(xi − xj)





6

.

Set S = A#G and R = AG identified both in A and in C(S). It follows from Theorem 7.1 that

d(S/R) =R×





∏

i<j

(xi − xj)





36

⊗ e.

We are interested in the skew group algebra Vn#Sn where Sn is the symmetric group on n letters acting

as permutations on the xi. We have that C(Vn#Sn) may be identified with C(Vn)
Sn . In the case when n is

even we can describe this center explicitly.

Lemma 7.3. Let Sn act on Vn as permutations of the variables and let Inn(Vn) denote the set of inner

automorphisms induced by normal elements of Vn. Then Sn ∩ Inn(Vn) = {e}.

Proof. Let σ be a nontrivial permutation of {1, . . . , n}, and suppose that σ is an inner automorphism induced

by the normal element a ∈ Vn. Choose i such that σ(i) 6= i. Then if one considers the equality axi = xσ(i)a,

one sees this is impossible since the set of monomials that appear on the left hand side is disjoint from the

set of monomials which appear on the right hand side. �

Lemma 7.4. Let En = k[e1, . . . , en] where the ei are the elementary symmetric functions in the x2
1, . . . , x

2
n.

If n is even, then C(Vn)
Sn = En and Vn is free over En of order 2nn!. Consequently, Vn#Sn is finitely

generated free over its center of order 2n(n!)2.

Proof. The elementary symmetric functions satisfy deg ei = 2i. Set En = k[e1, . . . , en]. We claim

rank(Vn/En) = 2nn!.

The Hilbert series of Vn is HVn
(t) = 1/(1− t)n while that for En is

HEn
(t) =

1

(1 − t2)(1− t4) · · · (1− t2n)
.

Let Hn(t) = HVn
(t)/HEn

(t) and assume inductively that Hn(1) = 2nn!. This clearly holds in the case n = 1.

Thus,

Hn+1(t) =
(1 − t2)(1− t4) · · · (1 − t2(n+1))

(1− t)n+1
= Hn(t) ·

(1− t2(n+1))

1− t
= Hn · (1 + tn+1)(1 + t+ t2 + · · ·+ tn).

Hence, Hn+1(1) = Hn(1) · 2 · (n+ 1) = 2n+1(n+ 1)!. Since Vn#Sn has rank n! over Vn it follows that it has

rank 2n(n!)2 over En.
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Freeness follows from the Auslander-Buchsbaum formula. Since En is a polynomial ring then pdEn
(Vn) =

depthEn
(Vn)− depth(En) = 0.

That the center of Vn#Sn is generated by the elementary symmetric functions follows from [2, Lemma

4.1 (3)] and Lemma 2.2 as no element of Sn acts as an inner automorphism by Lemma 7.3. �

When n is odd the center of Vn is not a polynomial ring and it follows that C(Vn#Sn) is also not a

polynomial ring.

Example 7.5. Let S2 act on V2 as above and set S = V2#S2. Then E2 = C(S) = k[X,Y ] whereX = x2+y2

and Y = x2y2. Since d(V2/E2) = Y 2(X2−4Y )2, then by Theorem 7.1, d(S/C(S)) =k× [Y 2(X2−4Y )2]2⊗e.

8. Automorphism groups

In this section we apply our results on the discriminant to compute explicitly the automorphism groups

in several cases.

8.1. An Ore extension of k[x, y]. Let A = k[x, y] and σ ∈ Aut(A) defined by σ(x) = y and σ(y) = x. Let

S = A[t;σ], so that S satisfies the relations

xy = yx, tx = yt, ty = xt.

By Example 6.6, f := d(S/C(S)) = 16(x − y)4t4. Set X = x + y, Y = xy, and T = t2, so that

f = 16(X2− 4Y )2T 2. Any automorphism of S preserves the center and hence the discriminant up to scalar.

Because the center is a UFD, we have that any automorphism either preserves the factors (X2 − 4Y ) and

T , or else it interchanges them (up to a scalar)

It follows that any automorphism g of A must take Y to either αY or βT , and T must go to either βT or

αY for α, β ∈ k×. Hence the restriction of g to k−1[Y, T ] must be an automorphism of k−1[Y, T ]. Since X is

in the center of A, g(X) must be in the center of A, and for g to map onto A we must have g(X) = γX + r,

where r ∈ C(A) ∩ k−1[Y, T ] ⊆ C(A). All such maps (with α, β, γ ∈ k×) are automorphisms of A, so all

automorphisms of A are triangular, in the sense of [2, Theorem 3(2)]. The automorphisms of A are (-1)-affine

[4, Definition 1.7], but not affine.

Let g ∈ Aut(S) and suppose g preserves the factors (up to scalar multiple). Then deg(g(X2)) ≤ 2 so

deg(g(X)) = 1. Similarly, deg(Y ) = 2 so deg(x) = deg(y) = 1. Moreover, deg(g(T )) = 2 so deg(t) = 1 and t

is mapped to a scalar multiple of itself. Thus, we reduce to a linear algebra problem and conclude that all

such g have the form,










x

y

t











7→











a b 0

b a 0

0 0 c





















x

y

t











+











d

d

0











,

with a, b, c ∈ k× and d ∈ k.
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A similar argument follows in the case that g interchanges the factors. These automorphisms have the

form










x

y

t











7→











a a −b
a a b

−c c 0





















x

y

t











+











d

d

0











with a, b, c ∈ k× and d ∈ k.

A is a skew-polynomial ring that satisfies H2, but not H1 of [4, p.12]. Compare with [4, Theorem 3.1];

C(A) = k[X,Y 2, Z2] – note that α1 = 1 – and Aut(A) is not affine. We conjecture that Aut(A) is not tame

– note that [4, Proposition 4.5] does not apply because g(X) can contain a constant. (See the definitions of

elementary and tame on p. 3 of [4].)

8.2. An Ore extension of V2. Let A = V2 with σ ∈ Aut(A) given by σ(x) = y, σ(y) = x. Set S = A[t;σ]

so that S satisfies

xy = −yx, tx = yt, ty = xt.

This example cannot be reduced to the skew polynomial case by using eigenvectors. Here A is not free

over Aσ = k〈x + y, x3 + y3〉 and Aσ is not AS regular. However, A is free over the polynomial ring

C(A)σ = k[x2 + y2, x2y2], and C(S) = k[x2 + y2, x2y2, t2] = k[X,Y, T ] is again a polynomial ring.

By Example 6.10 and Theorem 6.1,

d(S/C(S)) =k× T 8Y 8(X2 − 4Y )8.

The discriminant is not dominating, but the center is a UFD and we can eliminate cases easily.

Case 1: g(X2 − 4Y ) = α(X2 − 4Y ), g(Y ) = βY, g(T ) = γT .

Then g(X)2 = g(X2) = α(X2−4Y )+4g(Y ) = α(X2−4Y )+4βY = αX2+4(β−α)Y . For αX2+4(β−α)Y

to be the square of some polynomial in k[X,Y, T ] we need α = β, and then g(X) =
√
αX , g(Y ) = αY .

Then g(Y ) = g(x2y2) = −g((xy)2) = −α(xy)2 so that g(xy) has degree 2 and so g(x) and g(y) have degree

1. If g(T ) = γT , then g(t) =
√
γt. Hence the relations in A imply that all automorphisms of A are graded

automorphisms and of the form

g(x) = ay, g(y) = ax, g(t) = bt or g(x) = ax, g(y) = ay, g(t) = bt for a, b ∈ k.

The other cases are easily eliminated.

Case 2: g(X2 − 4Y ) = α(X2 − 4Y ), g(Y ) = βT, g(T ) = γY .

g(X)2 = g(X2) = α(X2 − 4Y ) + 4βT cannot happen in k[X,Y, T ].

Case 3: g(X2 − 4Y ) = αT, g(Y ) = βY, g(T ) = γ(X2 − 4Y ). g(X)2 = g(X2) = αT + 4βY cannot happen

in k[X,Y, T ].

Case 4: g(X2 − 4Y ) = αY, g(Y ) = β(X2 − 4Y ), g(T ) = γT . g(X)2 = g(X2) = αY + 4β(X2 − 4Y ) so

α = 16β and g(X) = 2
√
βX and g(Y ) = −g(xy)2 = β(X2 − 4Y ) so g(x) and g(y) have degree 1; further

g(t) =
√
γt and we are back to the automorphisms in Case 1.
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Case 5: g(X2 − 4Y ) = αT, g(Y ) = β(X2 − 4Y ), g(T ) = γY . g(X)2 = g(X2) = αT + 4β(X2 − 4Y ) cannot

happen in k[X,Y, T ].

Case 6: g(X2 − 4Y ) = αY, g(Y ) = βT, g(T ) = γ(X2 − 4Y ). g(X)2 = g(X2) = αY + 4βT cannot happen

in k[X,Y, T ]. All automorphisms of S are graded.

Question 8.1. Let R = k−1[x, y, z] and σ interchange x and y. Then C(R[t;σ]) = k[x2 + y2, x2y2, z2, t2]

(σ eliminates xyz from C(R)). Aut(R) contains a free subgroup on two generators; does Aut(R[t;σ]) also

contain a free subgroup on two generators?

8.3. An Ore extension of W2. Let σ ∈ Aut(W2) be given by σ(x) = y and σ(y) = x. Set S = W2[t;σ] so

that S satisfies

xy + yx = 1, tx = yt, ty = xt.

The center of S is C(S) = k[x2 + y2, x2y2, t2]. Set X = x2 + y2, Y = x2y2, and T = t2. By Example 6.10

and Theorem 6.1, d(S/C(S)) = T 8(4Y −1)8(X2−4Y )8. Determining the automorphism group of S involves

a case-by-case analysis that is nearly identical to that in 8.2.

Case 1: g(X2 − 4Y ) = α(X2 − 4Y ), g(4Y − 1) = β(4Y − 1), g(T ) = γT . Then g(X)2 = g(X2) =

α(X2 − 4Y ) + g(4Y ) = α(X2 − 4Y ) + β(4Y − 1) + 1 = αX2 + 4(β − α)Y + (1 − β). For αX2 + 4(β − α)Y

to be the square of some polynomial in k[X,Y, Z] we need α = β = 1, and then g(X) = X, g(Y ) = Y .

Then g(Y ) = g(x2y2) = −g((xy)2) = −(xy)2 so that g(xy) has degree 2 and so g(x) and g(y) have degree

1. If g(T ) = γT , then g(t) =
√
γt. Hence the relations in A imply that all automorphisms of A are affine

automorphisms, and of the form

g(x) = ay, g(y) = a−1x, g(t) = bt or g(x) = ax, g(y) = a−1y, g(t) = bt,

with a = ±1. The other cases are easily eliminated.

Case 2: g(X2 − 4Y ) = α(X2 − 4Y ), g(4Y − 1) = βT, g(T ) = γ(4Y − 1). 4Y − 1 has degree 4 and it follows

that g(4Y − 1) has degree 4. Since T is of degree 2, we cannot have g(4Y − 1) = βT .

Case 3: g(X2− 4Y ) = αT, g(4Y − 1) = β(4Y − 1), g(T ) = γ(X2− 4Y ). g(X)2 = g(X2) = αT +4β(4Y − 1)

is not a square in k[X,Y, Z].

Case 4: g(X2 − 4Y ) = α(4Y − 1), g(4Y − 1) = β(X2 − 4Y ), g(T ) = γT . g(X)2 = g(X2) = α(4Y − 1) +

4β(X2 − 4Y ) = 2βX2 + 4(α− 4β)Y − α. This is not a square in k[X,Y, T ].

Case 5: g(X2−4Y ) = αT, g(4Y −1) = β(X2−4Y ), g(T ) = γ(4Y −1). g(X)2 = g(X2) = 4αT+4β(X2−4Y )

is not a square in in k[X,Y, T ].

Case 6: g(X2 − 4Y ) = α(4Y − 1), g(4Y − 1) = βT, g(T ) = γ(X2 − 4Y ). See Case 2.

Hence, all automorphisms of W2 are affine and of the form in Case 1.

8.4. The homogenization of W2. Let H = H(W2) and C = C(H). In Example 6.9 it was shown that

d(H/C) =k×

(

4x2y2 − t4
)2
.
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Let I be a height one prime ideal of H . By [8, Theorem 6.6], either I = (t), I = (xy − yx), or I = (g)

with deg(g) > 1. Given φ ∈ Aut(H), it follows that φ(deg(r)) ≥ deg(r) and so (t) is the only height one

prime ideal generated by a degree one element. Hence φ(t) = αt for some α ∈ k×. Thus, deg(φ(t2)) = 2 and

so deg(φ(x2y2)) = 4. We conclude that φ is affine.

Let φ ∈ Aut(H) and write

φ(x) = a0 + a1x+ a2y + a3t, φ(y) = b0 + b1x+ b2y + b3t, φ(t) = c0 + c1x+ c2y + c3t,

with ai, bi, ci ∈ k for i = 0, . . . , 3. Because t is central, then c1 = c2 = 0. Hence,

0 = φ0(xy + yx− t2) = 2a0b0 − c20

and

0 = φ1(xy + yx− t2)

= 2 [a0(b1x+ b2y + b3t) + b0(a1x+ a2y + a3t)− c0c1t]

= 2 [(a0b1 + b0a1)x+ (a0b2 + b0a2)y + (a0b3 + b0a3 − c0c1)t] .

If b0 = 0, then c0 = 0 and a0b1 = a0b2 = a0b3 = 0. Since φ1(y) 6= 0, then a0 = 0. Suppose b0 6= 0, then

−a0

b0
= a1

b1
= a2

b2
so a1b2 − a2b1 = 0 and φ is not an isomorphism. Hence, we conclude that a0 = b0 = c0 = 0.

Thus,

0 = φ(xy + yx− t2)

= 2(a1b1x
2 + a2b2y

2) + (a1b2 + a2b1)xy + (a2b1 + a1b2)yx− c23t
2

= 2(a1b1x
2 + a2b2y

2) + (a1b2 + a2b1 − c23)t
2.

We have two cases. Either a1 = b2 = 0 or a2 = b1 = 0 and c3 is determined by the ai, bj . Thus,

Aut(H) = (k×)2 ⋊ {τ}

where τ is the involution interchanging x and y.

8.5. The automorphism group of V2#S2. Set A = V2#S2 and write S2 = {e, g} as before. Example 7.5

shows that d(A/C(A)) =k× [Y 2(X2 − 4Y )2]2 ⊗ e where X = x2 + y2 and Y = x2y2.

Because C(A) ∼= E2 is a PID, then any automorphism of A either preserves the factors Y and X2 − 4Y

or else it interchanges them (up to a scalar). Suppose φ ∈ Aut(V2). It follows easily that deg(φ(Y )) ≤ 4. If

φ preserves the factors Y and X2 − 4Y , then φ(Y ) = k1Y and φ(X2 − 4Y ) = k2(X
2 − 4Y ) for k1, k2 ∈ k×.

We have

k2(X
2 − 4Y ) = φ(X2 − 4Y ) = φ(X)2 − 4k1Y.
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Thus, φ(X)2 = k2(X
2 − 4Y )− 4k1Y . As V2 is a domain and the degree of the right-hand side is at most 4,

then the degree of φ(X) is at most 2. A similar argument shows the same result when φ interchanges the

factors.

Lemma 8.2. Let φ ∈ Aut(A), then φ(1 ⊗ g) = ±(1⊗ g).

Proof. Write φ(1 ⊗ g) = a⊗ e+ b⊗ g. We have (1⊗ g)2 = 1⊗ e, so

1⊗ e = (a⊗ e+ b⊗ g)2 = (a2 + b(g.b))⊗ e+ (ab+ b(g.a))⊗ g.

Hence, a2 + b(g.b) = 1 and ab+ b(g.a) = 0. Write a = a0 + a1 + · · ·+ ad where deg(ak) = k and similarly for

b. We have 0 = (ab + b(g.a))0 = 2a0b0 and 1 = (a2 + b(g.b))0 = a20 + b20. Thus, either a0 = ±1 and b0 = 0,

or b0 = ±1 and a0 = 0.

Suppose a0 = 1 and b0 = 0. The remaining cases are similar. Then 0 = (a2 + b(g.b))1 = 2a1, so a1 = 0,

and 0 = (ab+ b(g.a))1 = 2a0b1, so b1 = 0.

We proceed by induction. Suppose ak = bk = 0 for all k = 1, . . . , n− 1. Then

0 = (a2 + b(g.b))n =
(

(a0 + an)
2
)

n
= 2a0an,

so an = 0. Furthermore, 0 = (ab+ b(g.a))n = 2a0bn, so b0 = 0. �

Throughout, let φ ∈ Aut(A) and write φ(x ⊗ e) = r ⊗ e+ s⊗ g.

As a consequence of the Lemma 8.2 we have

φ(y ⊗ e) = φ((1 ⊗ g)(x⊗ e)(1 ⊗ g)) = (1 ⊗ g)φ(x⊗ e)(1⊗ g).

Hence,

φ(y ⊗ e) = (1⊗ g)(r ⊗ e+ s⊗ g)(1⊗ g) = g.r ⊗ e+ g.s⊗ g.

Moreover, x ⊗ g = (x ⊗ e)(1 ⊗ g) and y ⊗ g = (y ⊗ e)(1 ⊗ g). Thus, the automorphism φ is completely

determined by the choice of r and s.

Hence, we have the equations,

φ((x2 + y2)⊗ e) =
(

r2 + s(g.s) + g.r2 + (g.s)s
)

⊗ e+ (rs+ s(g.r) + g.(rs) + (g.s)r) ⊗ g,(8.3)

φ((xy + yx)⊗ e) =
(

r(g.r) + s2 + (g.r)r + (g.s)2
)

⊗ e+ (r(g.s) + sr + (g.r)s+ (g.s)(g.r)) ⊗ g.(8.4)

Lemma 8.5. The degree zero components of r and s are zero.

Proof. Since xy + yx = 0 0 = φ((xy + yx) ⊗ e), then by restricting (8.4) to the degree zero component we

find r20 + s20 = 0 and r0s0 = 0. The result now follows. �

Lemma 8.6. Suppose deg(r) > deg(s) > 1, then s = 0. Similarly, if deg(s) > deg(r) > 1, then r = 0.
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Proof. Suppose deg(r) > deg(s) > 1 and write r = r1 + · · ·+ rd where deg(rk) = k and by hypothesis d > 1.

Because φ is an automorphism, then deg(φ((x2+y2)⊗e)) ≤ 2. By (8.3),
(

r2 + s(g.s) + g.r2 + (g.s)s
)

2d
= 0,

then we have r2d + (g.rd)
2 = 0.

Because the action of g is diagonalizable, we can decompose rd uniquely into a sum of elements from the

two weight spaces, so rd = r+ + r− where g.r+ = r+ and g.r− = −r−. We then have

0 = r2d + (g.rd)
2 = 2(r2+ + r2−).

Because the weight spaces are disjoint, we conclude that rd = 0.

A similar argument holds in the case deg(s) > deg(r) > 1 but we use (8.4) instead of (8.3). �

Write r̂k = rk + g.rk and ŝk = sk + g.sk so that both r̂k and ŝk are fixed by the action of g and r̂k = 0 if

and only if rk belongs to the negative weight space. Since (x + y)2 = x2 + y2 in V2, then

φ((x2 + y2)⊗ e) = φ ((x+ y)⊗ e)2 =

[

d
∑

k=1

r̂k ⊗ e+ ŝk ⊗ g

]2

.

Let ℓ ∈ {2, . . . , d} be the largest degree such that the above expression is nonzero. Then we have

0 = (r̂ℓ ⊗ e+ ŝℓ ⊗ g)2

=
(

r̂2ℓ + ŝℓ(g.ŝℓ)
)

⊗ e+ (r̂ℓŝℓ + ŝℓ(g.r̂ℓ))⊗ g

=
(

r̂2ℓ + ŝ2ℓ
)

⊗ e+ (r̂ℓŝℓ + ŝℓr̂ℓ)⊗ g.

Each component must be zero and so (r̂ℓ+ ŝℓ)
2 = 0. Thus, r̂ℓ = −ŝℓ but because r̂2ℓ + ŝ2ℓ = 0 then r̂ℓ = ŝℓ = 0.

Hence, all higher degree components of r and s are contained in the negative weight space.

Write φ((x + y)⊗ e) = u⊗ e+ v ⊗ g with u, v ∈ V2. It follows from above that d = deg(u) = deg(v) and

uk, vk are contained in the negative weight space for k > 1. Then we have

φ((x2 + y2)⊗ e) = φ
(

[(x+ y)⊗ e]2
)

= [u⊗ e+ v ⊗ g]
2
= (u2 − v2)⊗ e+ (uv − vu)⊗ g.

Assume d > 1. In the top degree we have (u2
d − v2d) = 0 and (udvd − vdud) = 0 so (ud − vd)(ud + vd) = 0.

Hence, ud = ±vd.
Case 1 (ud = vd): We claim uk = vk for all k ≤ d. Suppose this holds for some ℓ ≤ d.

0 =
[

u2 − v2
]

d+ℓ−1
=
[

(u1 + · · ·+ ud)
2 − (v1 + · · ·+ vd)

2
]

d+ℓ−1

=
[

(u1 + · · ·+ ud)
2 − (v1 + · · ·+ vℓ−1 + uℓ + · · ·+ ud)

2
]

d+ℓ−1

= uℓ−1ud + uduℓ−1 − vℓ−1ud − udvℓ−1.

0 = [uv − vu]d−ℓ+1 = [(u1 + · · ·ud)(v1 + · · ·+ vd)− (v1 + · · ·+ vd)(u1 + · · ·ud)]d−ℓ+1

= [(u1 + · · ·ud)(v1 + · · ·+ vℓ−1 + uℓ + · · ·+ ud)− (v1 + · · ·+ vℓ−1 + uℓ + · · ·+ ud)(u1 + · · ·ud)]d−ℓ+1

= uℓ−1ud + udvℓ−1 − vℓ−1ud − uduℓ−1.
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Combining these gives

0 = uduℓ−1 − udvℓ−1 = ud(uℓ−1 − vℓ−1).

Hence, uℓ−1 = vℓ−1.

Case 2 (ud = −vd): This case follows similarly to the above.

We conclude that u1 = ±v1. An identical argument holds for (x− y)⊗ e. Thus, there exists α, β, γ, δ ∈ k

such that,

φ((x + y)⊗ e)1 = α(x + y)⊗ e + γ(x+ y)⊗ g

φ((x + y)⊗ g)1 = γ(x+ y)⊗ e+ α(x+ y)⊗ g

φ((x − y)⊗ e)1 = β(x − y)⊗ e+ δ(x − y)⊗ g

φ((x − y)⊗ g)1 = δ(x − y)⊗ e+ β(x − y)⊗ g.

These elements generate the degree 1 component of V2 and so the following matrix must be nonsingluar.

M =

















α 0 γ 0

γ 0 α 0

0 β 0 δ

0 δ 0 β

















.

But det(M) = −(β2 − δ2)(α2 − γ2), a contradiction since the above argument gave us α = ±γ. Note that

we assumed above that we are in the case that φ(1 ⊗ g) = 1 ⊗ g but the same argument works in the case

φ(1 ⊗ g) = −1⊗ g.

Write

φ(x⊗ e) = (a(x+ y) + b(x− y))⊗ e + (c(x+ y) + d(x − y))⊗ g.

Because φ is an isomorphism and the image of x⊗ e determines the isomorphism, then a 6= ±c and b 6= ±d

Theorem 8.7. Let φ ∈ V2#S2 and write φ(x ⊗ e) = (ax + by) ⊗ e + (cx + dy) ⊗ g for a, b, c, d ∈ k. The

parameters satisfy one of the three following conditions:

• a ∈ k×, b = c = d = 0;

• b, d ∈ k, b 6= 0, b 6= −d, a = − d2

b , c = −d;
• c, d ∈ k, c 6= −d, a = ±

√

c2+d2

2 , b = ∓
√

c2+d2

2 .

Proof. This is easily obtained by checking in Maple which parameters satisfy the defining relation and give

a bijective map. �
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