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Abstract. Given surjective homomorphisms R → T ← S of local rings, and

ideals in R and S that are isomorphic to some T -module V , the connected sum
R#TS is defined to be ring obtained by factoring out the diagonal image of

V in the fiber product R ×T S. When T is Cohen-Macaulay of dimension d

and V is a canonical module of T , it is proved that if R and S are Gorenstein
of dimension d, then so is R#TS. This result is used to study how closely an

artinian ring can be approximated by a Gorenstein ring mapping onto it. When
T is regular, it is shown that R#TS almost never is a complete intersection

ring. The proof uses a presentation of the cohomology algebra Ext∗R#kS
(k, k)

as an amalgam of the algebras Ext∗R(k, k) and Ext∗S(k, k) over isomorphic
polynomial subalgebras generated by one element of degree 2.

Introduction

We introduce, study, and apply a new construction of local Gorenstein rings.
The starting point is the classical fiber product R ×T S of a pair of surjective

homomorphisms εR : R→ T ← S : εS of local rings. It is well known that this ring
is local, but until recently, little was known about its properties. In Proposition 1.7
we show that if R, S, and T are Cohen-Macaulay of dimension d, then so is R×T S,
but this ring is Gorenstein only in trivial cases. When εR = εS , D’Anna [6] and
Shapiro [22] proposed and partly proved a criterion for R ×T R to be Gorenstein.
We complete and strengthen their results in Theorem 1.8: R×T R Is Gorenstein if
and only if R is Cohen-Macaulay and Ker εR is a canonical module for R.

Our main construction involves, in addition to the ring homomorphisms εR and
εS , a T -module V and homomorphisms ιR : V → R of R-modules and ιS : V → S
of S-modules, for the structures induced through εR and εS , respectively. When
these maps satisfy εRιR = εSιS , we define a connected sum ring by the formula

R#TS = (R×T S)/{(ιR(v), ιS(v)) | v ∈ V } .

In case R, S, and T have dimension d (for some d ≥ 0), R and S are Gorenstein,
T is Cohen-Macaulay, and V is a canonical module for T , one can choose ιR and ιS
to be isomorphisms onto (0 : Ker(εR)) and (0 : Ker(εS)), respectively. In Theorem
2.8 we prove that if εRιR = εSιS holds, then R#TS is Gorenstein of dimension d.

Much of the paper is concerned with Gorenstein rings of this form.
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As a first application, we study how efficiently an artinian local ring can be ap-
proximated by a Gorenstein artinian ring mapping onto it. One numerical measure
of proximity is given by the Gorenstein colength of an artinian ring, introduced
in [1]. We obtain new estimates for this invariant. We use them in the proof of
Theorem 4.7 to remove a restrictive hypothesis from a result of Huneke and Vraciu
[10], describing homomorphic images of Gorenstein local rings modulo their socles.

When d = 0 and T is a field, the construction of R#TS mimics the expression for
the cohomology algebra of a connected sum M#N of compact smooth manifolds
M and N , in terms of the cohomology algebras of M and N ; see Example 3.6. This
analogy provides the name and the notation for connected sums of rings.

The topological analogy also suggests that connected sums may be used for
classifying Cohen-Macaulay quotient rings of Gorenstein rings. The corresponding
classification problem is, in a heuristic sense, dual to the one approached through
Gorenstein linkage: Whereas linkage operates on the set of Cohen-Macaulay quo-
tients of a fixed Gorenstein ring R, connected sums operate on the set of Gorenstein
rings with a fixed Cohen-Macaulay quotient ring T .

This point of view raises the question of identifying those rings Q that are inde-
composable, in the sense that an isomorphism Q ∼= R#TS implies Q ∼= R or Q ∼= S.
In Theorem 8.3 we show that if T is regular and Q is complete intersection, then
either Q is indecomposable, or it is a connected sum of two quadratic hypersurface
rings. The argument uses the structure of the algebra Ext∗R#TS(T, T ), when R and
S are artinian and T is a field. In Theorem 7.3 we show that it is an amalgam
of Ext∗R(T, T ) and Ext∗S(T, T ) over a polynomial T -subalgebra, generated by an
element of degree 2. The machinery for the proof is fine-tuned in Sections 5 and 6.

1. Fiber products

The fiber product of a diagram of homomorphisms of commutative rings

(1.0.1)

R
εR

$$
IIIII

T

S
εS

::uuuuu

is the subring of R× S, defined by the formula

(1.0.2) R×T S = {(x, y) ∈ R× S | εR(x) = εS(y)} .

If R
αR←−− A αS−−→ S are surjective homomorphisms of rings, then for T = R⊗A S,

εR(r) = r ⊗ 1, and εS(s) = 1 ⊗ s the map a 7→ (αR(a), αS(a)) is a surjective
homomorphism of rings A→ R×T S with kernel Ker(αR) ∩Ker(αS), whence

(1.0.3) R×T S ∼= A/(Ker(αR) ∩Ker(αS)) .

In the sequel, the phrase (Q, q, k) is a local ring means that Q is a commutative
noetherian ring with unique maximal ideal q and residue field k = Q/q.

The following setup and notation are in force for the rest of this section:

1.1. The rings in diagram (1.0.1) are local: (R, r, k), (S, s, k), and (T, t, k).
The maps εR and εS are surjective; set I = Ker(εR) and J = Ker(εS), and also

P = R×T S .
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Let η denote the inclusion of rings P → R × S, and let R← R × S → S be the
canonical maps. Each (finite) module over R or S acquires a canonical structure
of (finite) P -module through the composed homomorphisms of rings R ← P → S
(finiteness is preserved because these maps are surjective).

The rings and ideals above are related through exact sequences of P -modules

0 −→ I ⊕ J −→ R⊕ S εR⊕εS−−−−−→ T ⊕ T −→ 0(1.1.1)

0 −→ R×T S
η−→ R⊕ S (εR,−εS)−−−−−−→ T −→ 0(1.1.2)

A length count in the second sequence yields the relation

(1.1.3) `(R×T S) + `(T ) = `(R) + `(S) .

For completeness, we include a proof of the following result; see [8, 19.3.2.1].

Lemma 1.2. The ring R×T S is local, with maximal ideal p = r×t s.

Proof. The rings R and S are quotients of P , so they are noetherian P -modules.
Thus, the P -module R⊕ S is noetherian, and hence so is its submodule P .

If (r, s) is in P , but not in r×t s, then r is not in r, so r is invertible in R. Since
εS is surjective, there exists s′ ∈ S with εS(s′) = εR(r−1). One then has εS(s′s) =
εR(r−1)εR(r) = 1, so a = s′s is an invertible element of S. Now (r−1, a−1s′) is in
P , and it satisfies (r−1, a−1s′)(r, s) = (r−1r, a−1s′s) = (1, 1). �

For any sequence x of elements of P and P -module M , we let Hn(x,M) denote
the nth homology module of the Koszul complex on x with coefficients in M .

Lemma 1.3. When x is a T -regular sequence in R ×T S and M denotes M/xM
for each (R×T S)-module M , there is an isomorphism of rings

R×T S ∼= R×T S
and there are exact sequences of (R×T S)-modules

0 −→ I ⊕ J −→ R⊕ S εR⊕εS−−−−−→ T ⊕ T −→ 0(1.3.1)

0 −→ R×T S
η−−→ R⊕ S (εR,−εS)−−−−−−→ T −→ 0(1.3.2)

The sequence x is R×T S-regular if and only if it is R-regular and S-regular.

Proof. One has Hn(x, T ) = 0 for n ≥ 1, so (1.1.1) induces an exact sequence of
Koszul homology modules, which contains (1.3.1). It also gives an isomorphism

H1(x, P ) ∼= H1(x, R)⊕H1(x, S) ,

which shows that x is P -regular if and only if it is R-regular and S-regular.
The exact sequence of Koszul homology modules induced by (1.1.2) contains the

exact sequence (1.3.2), which, in turn implies the desired isomorphism of rings. �

We relate numerical invariants of P to the corresponding ones of R, S, and T .

1.4. When Q is a local ring and N a finite Q-module, dimQN denotes its Krull
dimension and depthQN its depth of N . Recall that if P → Q is a finite homomor-
phism of local rings, then one has dimP N = dimQN and depthP N = depthQN .

We set dimQ = dimQN and depthQ = depthQQ; thus, there are equalities
dimQ = dimP Q and depthQ = depthP Q.

Recall that edimQ denotes the embedding dimension of Q, defined to be the
minimal number of generators of its maximal ideal.
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Lemma 1.5. The following (in)equalities hold:

edim(R×T S) ≥ edimR+ edimS − edimT .(1.5.1)

dim(R×T S) = max{dimR , dimS} ≥ min{dimR , dimS} ≥ dimT .(1.5.2)

depth(R×T S) ≥ min{depthR , depthS , depthT + 1} .(1.5.3)

depthT ≥ min{depthR,depthS, depth(R×T S)− 1} .(1.5.4)

Proof. Lemma 1.2 gives an exact sequence of P -modules

0→ p→ r⊕ s→ t→ 0

Tensoring it with P/p over P , we get an exact sequence of k-vector spaces

p/p2 → r/r2 ⊕ s/s2 → t/t2 → 0

because we have pr = r2, ps = s2, and pt = t2, due to the surjective homomorphisms
R ← P → S → T ← R. These maps also give min{dimR , dimS} ≥ dimT and
dimP ≥ max{dimR , dimS}, while the inclusion η from (1.1.2) yields

max{dimP R , dimP S} = dimP (R⊕ S) ≥ dimP P .

For (1.5.3) and (1.5.4), apply the Depth Lemma, see [4, 1.2.9], to (1.1.2). �

For a local ring (Q, q, k) and Q-module N , set SocN = {n ∈ N | qn = 0}. When
x is a maximal N -regular sequence, rankk Soc(N/xN) is a positive integer that
does not depend on x, see [4, 1.2.19], denoted typeQN . Set typeQ = typeQQ;
thus, Q is Gorenstein if and only if it is Cohen-Macaulay and typeQ = 1.

We interpolate a useful general observation that uses fiber producs.

Lemma 1.6. Let (Q, q, k) be a local ring and W a k-subspace of (Soc(Q) + q2)/q2.
There exists a ring isomorphism Q ∼= B ×k C, where (B, b, k) and (C, c, k) are

local rings, such that c2 = 0 and c ∼= W .
If W = Soc(Q) + q2)/q2, then Soc(B) ⊆ b2.

Proof. When Soc(Q) is in q2, set B = Q and C = k. Else, pick in SocQ a set x
that maps bijectively to a basis of W , then choose in q a set y ⊂ q, so that x ∪ y
maps bijectively to a basis of q/q2. Set B = Q/(x) and C = Q/(y). One then has
q = (x)+(y), hence B⊗QC ∼= k, and also (x)∩ (y) = 0, so Q ∼= B×kC by (1.0.3).
The desired properties of B and C are verified by elementary calculations. �

The next two results concern ring-theoretic properties of fiber products.

Proposition 1.7. Assume that T is Cohen-Macaulay, and set d = dimT .
The ring R×T S is Cohen-Macaulay of dimension d if and only if R and S are.
When R×T S is Cohen-Macaulay of dimension d the following inequalities hold:

typeR+ typeS ≥ type(R×T S)

≥ max{typeR+ typeS − typeT, typeR I + typeS J} .

If, in addition, I and J are non-zero, then R×T S is not Gorenstein.

Proof. The first assertion follows directly from Lemmas 1.3 an 1.5, so assume that
P is Cohen-Macaulay of dimension d. Choosing in P an (P ⊕ T )-regular sequence
of length d, from (1.3.2) we get an exact sequence of k-vector spaces

0 −→ Soc(P )
Soc η−−−−→ SocR⊕ SocS

(Soc εR,− Soc εS)−−−−−−−−−−−→ SocT
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It provides the inequalities involving typeR and typeS. Formula (1.3.1) gives
εR(Soc I) = 0 = εS(Soc J), so the sequence above yields η(SocP ) ⊇ Soc I ⊕ Soc J .
When I 6= 0 6= J holds, we get I 6= 0 6= J by Nakayama’s Lemma. Since R and S
are artinian, one has Soc I 6= 0 6= SocJ , whence typeP ≥ 2. �

When εR : R → R/I is the canonical map and εS = εR, the ring R ./ I =
R×R/I R has been studied under the name amalgamated duplication of R along I.
We complete and strengthen results of D’Anna and Shapiro:

Theorem 1.8. Let R be a local ring, d its Krull dimension, and I a non-unit ideal.
The ring R ./ I is Cohen-Macaulay if and only if R is Cohen-Macaulay and I

is a maximal Cohen-Macaulay R-module.
The ring R ./ I is Gorenstein if and only if R is Cohen-Macaulay and I is a

canonical module for R, and then R/I is Cohen-Macaulay with dim(R/I) = d− 1.

We start by listing those assertions in the theorem that are already known.

1.9. Assume that the ring R is Cohen-Macaulay.

1.9.1. If I is a maximal Cohen-Macaulay module, then R ./ I is Cohen-Macaulay:
This is proved by D’Anna in [6, Discussion 10].

1.9.2. If I is a canonical module for R, then R ./ I is Gorenstein: This follows
from a result of Eisenbud; see [6, Theorem 12].

1.9.3. If R ./ I is Gorenstein and I contains a regular element, then I is a canonical
module for R: In D’Anna’s proof of [6, Theorem 11], this is deduced from [6,
Proposition 3]; the italicized part of the hypothesis does not appear in the statement
of that proposition, but Shapiro [22, 2.1] shows that it is needed.

1.9.4. If R ./ I is Gorenstein and dimR = 1, then I contains a regular element:
This is proved by Shapiro, see [22, 2.4]; in the statement of that result it is also
assumed that R reduced, but this hypothesis is not used in the proof.

Proof of Theorem 1.8. Set P = R ./ I and d = dimR; thus, dimP = d by (1.5.2).
We obtain the first assertion from a slight variation of the argument for 1.9.1.

The map R→ R×R, given by r 7→ (r, r), defines a homomorphisms of rings R→ P
that turns P into a finite R-module. Thus, P is a Cohen-Macaulay ring if and only
if it is Cohen-Macaulay as an R-module; see 1.4. This module is isomorphic to R⊕I,
because each element (r, s) ∈ P has a unique expression of the form (r, r)+(0, s−r).
It follows that P is Cohen-Macaulay if and only if R is Cohen-Macaulay and I is a
maximal Cohen-Macaulay R-module.

In view of 1.9.2, for the rest of the proof we may assume P Gorenstein.
Set T = R/I. We have depthT ≥ d− 1 ≥ 0 by (1.5.4) and Proposition 1.7. By

the already proved assertion, R is Cohen-Macaulay with depthR = d, so we can
choose in P a T -regular and R-regular sequence x of length d−1; for each P -module
M set M = M/xM . By Lemma 1.3, x is P -regular, I is an ideal in R and there
are isomorphisms of rings T ∼= R/I and P ∼= R ./ I. As R is Cohen-Macaulay with
dimR = 1 and P is Gorenstein, 1.9.4 shows that I contains an R-regular element.
This yield dimT = 0, hence dimT = d − 1, so T is Cohen-Macaulay. Since R is
Cohen-Macaulay as well, we have gradeR T = dimR − dimT = 1, so I contains a
regular element, and hence I is a canonical module for R, due to 1.9.3. �
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2. Connected sums

A connected sum diagram of commutative rings is a commutative diagram

(2.0.1)

R
εR

$$
JJJJJJ

V

ιR
::tttttt

ιS %%
JJJJJJ T

S
εS

::tttttt

where V is a T -module, ιR a homomorphism of R-modules (with R acting on V
through εR) and ιS a homomorphism of S-modules (with S acting on V via εS).

Evidently, {(ιR(v), ιS(v)) ∈ R× S | v ∈ V } is an ideal of R×T S. We define the
connected sum of R and S along the diagram (2.0.1) to be the ring

(2.0.2) R#TS = (R×T S)/{(ιR(v), ιS(v)) | v ∈ V } .

As in the case of fiber products, the maps in the diagram are suppressed from the
notation, although the resulting ring does depend on them; see Example 3.1. The
choices of name and notation are explained in Example 3.6.

We fix the setup and notation for this section as follows:

2.1. The rings in diagram (2.0.1) are local: (R, r, k), (S, s, k) and (T, t, k).
The maps εR and εS are surjective; set I = Ker(εR), J = Ker(εS), also

P = R×T S and Q = R#TS .

The maps ιR and ιS are injective, so there are exact sequences of finite P -modules

0 −→ V ⊕ V ιR⊕ιS−−−−→ R⊕ S −→ R/ιR(V )⊕ S/ιS(V ) −→ 0(2.1.1)

0 −→ V
ι−→ R×T S

κ−→ R#TS −→ 0(2.1.2)

where ι : v 7→ (ιR(v), ιS(v)) and κ is the canonical surjection.
A length count in (2.1.2), using formula (1.1.3), yields

(2.1.3) `(R#TS) + `(T ) + `(V ) = `(R) + `(S) .

2.2. The ring Q is local and we write (Q, q, k), unless Q = 0. The condition Q = 0
is equivalent to ιR(V ) = R, and also to ιS(V ) = S: This follows from the fact that
(P, p, k) is a local ring with p = r×T s, see Lemma 1.2.

When I = 0 one has R×T S ∼= S, hence R#TS ∼= S/ιS(V ).

Lemma 2.3. If a sequence x in R×T S is regular on R/ιR(V ), S/ιS(V ), T , and V ,
then it is also regular on R, S, R×T S, and R#TS, and there is an isomorphism

R#TS ∼= R#TS

of rings, where M denotes M/xM for every R×T S-module M .

Proof. The sequence (2.1.1) induces an exact sequence of Koszul homology modules

(2.3.1) 0 −→ H1(x, R)⊕H1(x, S) −→ 0 −→ V ⊕ V ιR⊕ιS−−−−→ R⊕ S

It follows that x is R-regular and S-regular. Lemma 1.3 shows that it is also
P -regular, so (2.1.2) induces an exact sequence of Koszul homology modules

0 −→ H1(x, Q) −→ V
ι−−→ P

κ−−→ Q −→ 0
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Note that ι is equal to the composition of the diagonal map V → V ⊕ V and
ιR ⊕ ιS : V ⊕ V → R ⊕ S. Both are injective, the second one by (2.3.1), so ι is
injective as well. We get H1(x, Q) = 0, so x is Q-regular. After identifying P and
R×T S through Lemma 1.3, we get Q ∼= R#TS from the injectivity of ι. �

Proposition 2.4. If the rings, R/ιR(V ), S/ιS(V ), T , and the T -module V are
Cohen-Macaulay of dimension d, then so are the rings R, S, R×T S, and R#TS.

Proof. The exact sequence (2.1.1) implies that R and S are Cohen-Macaulay of
dimension d. Proposition 1.7 then shows that so is P ; this gives dimQ ≤ d. Let x
be a sequence of length d in P , which is regular on (R/ιR(V )⊕ S/ιS(V )⊕ T ⊕ V ).
By Lemma 2.3, it is also Q-regular, so Q is Cohen-Macaulay of dimension d. �

To describe those situations, where connected sums do not produce new rings,
we review basic properties of Hilbert-Samuel multiplicities.

2.5. Let (P, p, k) be a Cohen-Macaulay local ring of dimension d.
When k is infinite, the multiplicity e(P ) can be expressed as

e(P ) = inf{`(P/xP ) | x is a P -regular sequence in P} ;

see [4, 4.7.11]. If P → P ′ is a surjective homomorphism of rings, and P ′ is Cohen-
Macaulay of dimension d, then by [20, Ch. 1, 3.3] there exists in P a sequence x
that is both P -regular and P ′-regular, and e(P ′) = `(P ′/xP ′) holds.

When k is finite, one has eP (M) = eP [y]p[y]

(
M ⊗P P [y]p[y]

)
.

The ring P is regular if and only if if e(P ) = 1.
It is a quadratic hypersurface if and only if e(P ) = 2.

Proposition 2.6. Assume that the rings R/ιR(V ), S/ιS(V ), and T , and the T -
module V , are Cohen-Macaulay, and their dimensions are equal.

When R is regular one has I = 0 and R#TS ∼= S/ιS(V ).
When R is a quadratic hypersurface and I 6= 0, one has R#TS ∼= S.

Proof. Set d = dimT . By Proposition 2.4, P , Q, R, and S are Cohen-Macaulay of
dimension d. Thus, every P -regular sequence is also regular on Q, R, and S.

When R is regular it is a domain; dimR = dimT implies I = 0, so 2.2 applies.
Assume I 6= 0 and e(R) = 2. Tensoring, if necessary, the diagram (2.0.1) with

P [x]p[x] over P , we may assume that k is infinite. By 2.5, there is a P - and R-

regular sequence x of length d in P , such that `(R) = 2, where overbars denote
reduction modulo x. From (1.3.1) and I 6= 0 one gets `(T ) = `(R)− `(I) ≤ 1. This
implies `(T ) = 1 = `(V ), so Lemma 2.3 and (2.1.3) give `(Q) = `(S).

Setting K = Ker(Q→ S), one sees that the induced sequence

0 −→ K −→ Q −→ S −→ 0

is exact, due to the S-regularity of x, hence K = 0, and thus K = 0. �

A construction of canonical modules sets the stage for the next result.

2.7. The ideal (0 : I) of R is a T -module, which is isomorphic to HomR(T,R).
Similarly, (0 : J) ∼= HomS(T, S) as T -modules. If R and S are Gorenstein, T is
Cohen-Macaulay, and all three rings have dimension d, then (0 : I) and (0 : J) are
isomorphic T -modules, since both are canonical modules for T ; see [4, 3.3.7].
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Theorem 2.8. Let R and S be Gorenstein local rings of dimension d, let T be a
Cohen-Macaulay local ring of dimension d and V a canonical module for T .

Let εR, εS, ιR, and ιS be maps that satisfy the conditions in 2.1 and, in addition,

ιR(V ) = (0 : I) and ιS(V ) = (0 : J) .

If I 6= 0 or J 6= 0, then R#TS is a Gorenstein local ring of dimension d.

Remark. The condition I 6= 0 is equivalent to J 6= 0.
Indeed I = 0 implies R = (0 : I) = ιR(V ), hence εSιS(V ) = εRιR(V ) = T . In

particular, for some v ∈ V one has εSιS(v) = 1 ∈ T , hence S = SιS(v) ⊆ (0 : J),
and thus J = 0. By symmetry, J = 0 implies I = 0.

Proof of Theorem 2.8. The T -module V is Cohen-Macaulay of dimension d, see [4,
3.3.13]. The rings R/(0 : I) and S/(0 : J) have the same property, by [17, 1.3].
Proposition 2.4 now shows that the ring Q is Cohen-Macaulay of dimension d.

Choose in P an (R/ιR(V )⊕S/ιS(V )⊕Q⊕T⊕V )-regular sequence x of length d.
It suffices to show that Q/xQ is Gorenstein. The T/xT -module V/xV is canonical,
see [4, 3.3.5], so reduction modulo x preserves the hypotheses of the theorem. In
view of Lemma 2.3, we may assume that all rings involved are artinian.

Now we have SocV = Tu for some u ∈ SocT ; see [4, 3.3.13]. To prove that Q is
Gorenstein we show that κ(ιR(u), 0) generates SocQ. Write q ∈ SocQ in the form

q = κ(a, b) with (a, b) ∈ r×T s = p .

As S is Gorenstein, one has ιS(u) ∈ SocS ⊆ J . For every i ∈ I this gives εR(i) =
0 = εSιS(u). Thus, (i, ιS(u)) is in p, so κ(i, ιS(u)) · q ∈ q · q = 0 holds, hence

(ia, 0) = (i, ιS(u)) · (a, b) = (ιR(x), ιS(x))

for some x ∈ V . Since ιS is injective we get x = 0, hence ia = 0. As i was
arbitrarily chosen in I, this implies a ∈ (0 : I); that is, a = ιR(v) for some v in V .
By symmetry, we conclude b = ιS(w) for some w ∈ V . As a consequence, we get

q = κ(ιR(v), ιS(w)) with v, w ∈ V .

Pick any t in t, then choose r in r and s in s with εR(r) = t = εS(s). Thus, (r, s)
is in p, hence κ(r, s) is in q, whence κ(r, s) · q = 0. We then have

(ιR(tv), ιS(tw)) = (rιR(v), sιS(w)) = (r, s) · (ιR(v), ιS(w)) = (ιR(y), ιS(y))

for some y ∈ V . This yields ιR(tv) = ιR(y) and ιS(tw) = ιS(y), hence tv = y = tw,
due to the injectivity of ιR and ιS ; in other words, t(v − w) = 0. Since t was an
arbitrary element of t, we get t(v − w) = 0, hence v = w + t′u for some t′ ∈ T .
Choosing r′ in R and s′ in S with εR(r′) = t′ = εS(s′), we have (r′, s′) ∈ P and

q = κ(ιR(w), ιS(w)) + κ(ιR(t′u), 0)

= κ
(
(r′, s′) · (ιR(u), 0)

)
= κ(r′, s′) · κ(ιR(u), 0)

As q can be any element of SocQ, we get SocQ = Q · κ(ιR(u), 0), as desired. �
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3. Examples and variations

We collect examples to illustrate the hypotheses and the conclusions of results
proved above, and review variants and antecedents of the notion of connected sum.

Seemingly minor perturbations of diagram (2.0.1) may lead to non-isomorphic
connected sum rings. Next we produce a concrete illustration. See also Example
3.7 for connected sums that are not isomorphic as graded algebras.

Example 3.1. Over the field Q of rational numbers, form the algebras

R = Q[x]/(x3) , S = Q[y]/(y3) , and T = Q .

Letting both εR : R→ T and εS : S → T be the canonical surjections, one gets

R×T S = Q[x, y]/(x3, xy, y3) .

Set V = Q and let ιR : V → R and ιS : V → S be the maps q 7→ qx and q 7→ qy,
respectively. The connected sum defined by these data is a local ring (Q, q, k) with

Q = Q[x, y]/(x2 − y2, xy) .

On the other hand, take the same maps εR, εS , and ιS as above, and replace
ιR with the map q 7→ pq, where p is a prime number that is not congruent to 3
modulo 4. We then get as connected sum a local ring (Q′, q′,Q) with

Q′ = Q[x′, y′]/(x′2 − py′2, x′y′) .
We claim that these rings are not isomorphic. In fact, more is true:
Every ring homomorphism κ : Q′ → Q satisfies κ(q′) ⊆ q2.
Indeed, any ring homomorphism of Q-algebras is Q-linear, so κ is a homomor-

phism of Q-algebras. The images of x′ and y′ can be written in the form

κ(x′) = ax+ by + cy2

κ(y′) = dx+ ey + fy2

for appropriate rational numbers a, b, c, d, e, and f . In Q this gives equalities

(a2 + b2)x2 = a2x2 + b2y2 = κ(x′2) = κ(py′2) = p(d2x2 + e2y2) = p(d2 + e2)x2

We need to show that the only rational solution of the equation

(3.1.1) a2 + b2 = p(d2 + e2)

is the trivial one. If not, then a2 + b2 6= 0. Clearing denominators, we may assume
a, b, c, d ∈ Z and write a2 + b2 = pig and d2 + e2 = pjh with integers g, h, i, j ≥ 0,
such that gh is not divisible by p. By Fermat’s Theorem on sums of two squares,
see [21, §5.6], i and j must be even. This is impossible, as (3.1.1) forces i = j + 1.

Now we turn to graded rings and degree-preserving homomorphisms.
Recall that the Hilbert series of a graded vector space D over a field k, with

rankkDn <∞ for all n ∈ Z and Dn = 0 for n� 0, is the formal Laurent series

HD =
∑

n>−∞
rankk(Dn)zn ∈ Z[[z]][z−1] .

Remark 3.2. Let k be a field and assume that the rings R and S in diagram (1.0.1)
are commutative finitely generated N-graded k-algebras with R0 = k = S0, and the
maps are homogeneous. Equation (1.1.3) then can be refined to:

(3.2.1) HR×TS = HR +HS −HT ,
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and the obvious version of Theorem 1.7 for graded rings holds as well.
Assume, in addition, that in the diagram (2.0.1) all maps are homogeneous.

Equation (2.1.3) then can be refined to:

(3.2.2) HR#TS = HR +HS −HT −HV .

Diligence is needed to state a graded analog of Theorem 2.8. Recall that for each
finite graded T -module N one has HM = hN/gN with hN ∈ Z[z±1] and gN ∈ Z[z],
and that the integer a(N) = deg(hN )− deg(gN ) is known as the a-invariant of N .

Theorem 3.3. Let R
εR−−→ T

εS←− S be surjective homomorphisms of commutative
N-graded k-algebras of dimension d, with R0 = k = S0. Assume that R and S are
Gorenstein, T is Cohen-Macaulay, and V is a canonical module for T .

A connected sum diagram (2.0.1), with ιR and ιS isomorphisms of graded mod-
ules, exists if and only if a(R) = a(S). When this is the case the graded algebra
R#TS is Gorenstein of dimension d, with a(R#TS) = a(R) and

(3.3.1) HR#TS(z) = HR(z) +HS(z)−HT (z)− (−1)dza(R) ·HT (z−1) .

Proof. From [4, 4.4.5] one obtains

HHomR(T,R)(z) = za(R) ·HHomR(T,R(a))(z) = (−1)dza(R) ·HT (z−1) ,

and a similar formula with S in place of R. Thus, HomR(T,R) ∼= HomS(T, S) holds
as graded T -modules if and only if a(R) = a(S). In this case, Theorem 2.8 (or its
proof) shows that R#TS is Gorenstein, and formula (3.2.2) yields (3.3.1). �

Generation in degree 1 does not transfer from R and S to R×T S or R#TS:

Example 3.4. Set T = k[z]/(z2) and form the homomorphisms of k-algebras

R = k[x]/(x5)→ T ← k[y]/(y5) = S with x 7→ z ← y .

Choose V = T and define homomorphisms R
ιR←− V

ιS−→ S by setting ιR(1) = x3

and ιS(1) = y3. The graded k-vector space R×T S has a homogeneous basis

{(xi, yi)}0≤i≤4 ∪ {(0, yj)}2≤j≤4 ,

which yields R×T S ∼= k[u, v]/(u5, uv2, v2 − u2v) with deg(u) = 1 and deg(v) = 2.
The canonical module of T is isomorphic to (x3) ⊂ R and (y3) ⊂ S. Therefore,

one gets R#TS ∼= k[u, v]/(v2 − u2v, 2uv − u3), with degrees as above.

Remark 3.5. For the definition of connected sum given in (2.0.2) to work in a non-
commutative context, the only change needed is to require that the maps ιR and
ιS in diagram (2.0.1) be homomorphisms of T -bimodules.

When the maps in the diagram are homogeneous homomorphisms of rings and
bimodules, the resulting connected sum is a graded ring.

Remark 3.5 is used implicitly in the next two examples, which deal with graded-
commutative, rather than commutative, k-algebras.

Example 3.6. Let M and N be compact connected oriented smooth manifolds
of the same dimension, say n. The connected sum M#N is the manifold ob-
tained by removing an open n-disc from each manifold and gluing the resulting
manifolds with boundaries along their boundary spheres through an orientation-
reversing homeomorphism. The cohomology algebras with coefficients in a field
k satisfy H∗(M#N) ∼= H∗(M)#k H∗(N), with εH∗(M) and εH∗(N) the canonical
augmentations, V = k, and ιH∗(M)(1) and ιH∗(N)(1) the orientation classes.
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What may be the earliest discussion of connected sums in a ring-theoretical
context followed very closely the topological model:

Example 3.7. Sah [19] formed connected sums of graded Poincaré duality algebras
along their orientation classes, largely motivated by the following special case:

A Poincaré duality algebra R with Ri = 0 for i 6= 0, 1, 2 is completely described
by the quadratic form R1 → k, obtained by composing the map x 7→ x2 with the

inverse of the orientation isomorphism k
∼=−→ R2. Such algebras are isomorphic if

and only if the corresponding forms are equivalent, and the connected sum of two
such algebras corresponds to the Witt sum of the corresponding quadratic forms.

4. Gorenstein colength

Let (Q, q, k) be an artinian local ring and E an injective hull of k.
The Gorenstein colength of Q is defined in [1] to be the number

gclQ = min

{
`(A)− `(Q)

∣∣∣∣∣ Q ∼= A/I with A an artinian

Gorenstein local ring

}
.

One has gclQ = 0 if and only if Q is Gorenstein, and

0 ≤ gclQ ≤ `(Q) <∞ ,

as the trivial extension Qn E is Gorenstein, see [4, 3.3.6], and `(Qn E) = 2 `(Q).

Lemma 4.1. If Q is a non-Gorenstein artinian local ring and Q→ C is a surjective
homomorphism with C Gorenstein, then the following inequality holds:

gclQ ≥ edim(Q)− (`(Q)− `(C)) .

Proof. Let A→ Q be a surjection with (A, a, k) Gorenstein and `(A)−`(Q) = gclQ.
It factors through A→ Q, where A = A/ SocA. Applying HomA(−, A) to the exact
sequence 0→ a/a2 → A/a2 → A/a→ 0, one gets an exact sequence

0→ (0 : a)A → (0 : a2)A → HomA(a/a2, A)→ 0

that yields Soc(A) ∼= HomA(a/a2, A). As a annihilates a/a2, the second module
is isomorphic to Homk(a/a2, k). Set K = Ker(A → C). Since `(Soc(C)) = 1, the
inclusion Soc(A)/(K ∩ (Soc(A)) ⊆ Soc(C) gives the second inequality below:

`(K) ≥ `(K ∩ SocA) ≥ `(Soc(A))− 1 = edimA− 1 ≥ edimQ− 1.

The desired inequality now follows from a straightforward length count:

`(A)− `(Q) = (`(K) + 1)− (`(Q)− `(C)) ≥ edimQ− (`(Q)− `(C)) . �

Rings of embedding dimension 1 need separate consideration.

4.2. Let (S, s, k) be an artinian local ring with edimS ≤ 1.
The ring S is Gorenstein, and one has S ∼= C/(xn) with (C, (x), k) a discrete

valuation ring and n = `(S); thus, there is a surjective, but not bijective, homomor-
phism B → S, where B = C/(xn+1) is artinian, Gorenstein, with `(B) = `(S) + 1.

Proposition 4.3. Let (R, r, k) and (S, s, k) be artinian local rings, with r 6= 0 6= s.

(1) When R and S are Gorenstein, there is an inequality

gcl(R×k S) ≥ edimR+ edimS − 1 ;

equality holds if edimR = 1 = edimS.
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(2) When R is not Gorenstein, there are inequalities

1 ≤ gcl(R×k S) ≤

{
gclR if edimS = 1 ;

gclR+ gclS − 1 if gclS ≥ 1 .

Proof. The ring R×kS is not Gorenstein by Proposition 1.7, hence gcl(R×kS) ≥ 1.
(1) The ring R#kS is Gorenstein by Theorem 2.8, so apply Lemma 4.1 to the

homomorphism R×k S → R#kS and use edim(R×k S) = edimR+ edimS.
(2) Choose a surjective homomorphism A→ R with A artinian Gorenstein and

`(A) = `(R) + gclR. If gclS ≥ 1, let B → S be a surjective homomorphism with
B artinian Gorenstein and `(B) = `(S) + gclS; if edimS = 1, let B → S be the
map described in 4.2. In both cases there is a commutative diagram

A // // R

## ##
GGGGG

k

;;vvvvv

##
HHHHH k

B // // S

;; ;;wwwww

where two-headed arrows denote surjective homomorphisms of local rings, and the
maps from k are isomorphisms onto the socles of A and B. Both compositions
R← k → S are zero, so there is a surjective homomorphism A#kB → R×k S.

In the following string the inequality holds because A#kB is Gorenstein, see
Theorem 2.8, and the first equality comes from formulas (1.1.3) and (2.1.3):

gcl(R×k S) ≤ `(A#kB)− `(R×k S)

= (`(A) + `(B)− 2)− (`(R) + `(S)− 1)

= gclR+ (`(B)− `(S)− 1)

The desired upper bounds now follow from the choice of B. �

As a first application, we give a new, simple proof of a result of Teter, [23, 2.2].

Corollary 4.4. A local ring (Q, q, k) with q2 = 0 has gclQ = 1 or edimQ ≤ 1.

Proof. The condition q2 = 0 is equivalent to q = SocQ. Set rankk q = s.
One has s = edimQ, so we assume s ≥ 2; we then have gclQ ≥ 1. Lemma 1.6

gives Q ∼= R×kS where (R, r, k) and (S, s, k) are local rings, r2 = 0, edimR = s−1,
and edimS = 1. If s = 2, then edimR = 1, hence gclQ = 1 by Proposition 4.3(1). If
s ≥ 3, then gclR = 1 holds by induction, so Proposition 4.3(2) yields gclQ = 1. �

Note that the conditions gclQ = 1 and edimQ ≤ 1 are mutually exclusive; one
or the other holds if and only if R is isomorphic to the quotient of some artinian
Gorenstein ring by its socle, see 4.2. Such rings are characterized as follows:

4.5. Let (Q, q, k) be an artinian local ring and E an injective envelope of k.
Teter [23, 2.3, 1.1] proved that there exists an isomorphism Q ∼= A/ Soc(A), with

(A, a, k) an artinian Gorenstein local ring, if and only if there is a homomorphism
of Q-modules ϕ : q→ HomQ(q, E) satisfying ϕ(x)(y) = ϕ(y)(x) for all x, y ∈ q.

His analysis includes the following observation: E ∼= HomA(Q,A), so the exact
sequence 0 → k → A → Q → 0 induces an exact sequence 0 → E → A → k → 0.
It yields E ∼= a, and thus a composed Q-linear surjection E ∼= a→ a/ Soc(A) = q.

Using Teter’s result, Huneke and Vraciu proved a partial converse:
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4.6. If SocQ ⊆ q2, 2 is invertible in Q, and there exists an epimorphism E → q,
then Q ∼= A/Soc(A) with A Gorenstein; see [10, 2.5].

We lift the restriction on the socle of Q.

Theorem 4.7. Let (Q, q, k) be an artinian local ring, in which 2 is invertible, and
let E be an injective hull of k.

If there is an epimorphism E → q, then Q ∼= A/Soc(A) with A Gorenstein.

Proof. By Lemma 1.6, there is an isomorphism Q ∼= R×kS, where (R, r, k) is a local
ring with Soc(R) ⊆ r2 and (S, s, k) is a local ring with s2 = 0. Choose a surjective
homomorphism P → Q with P Gorenstein and set ER = HomP (R,P ) and ES =
HomP (S, P ). We then have E ∼= HomP (Q,P ) and surjective homomorphisms

ER ⊕ ES
α−→ E

β−→ q = r⊕ s
γ−→ r

where α is induced by the composition Q ∼= R ×k S ↪→ R ⊕ S, β comes from the
hypothesis, and γ is the canonical map. Note that `(E) = `(Q) > `(q) = `(β(E))
implies Ker(β) 6= 0; since `(SocE) = 1, we get SocE ⊆ Ker(β).

One has q2α(ES) = α(q2ES) = 0. This gives qα(ES) ⊆ Soc(E) ⊆ Ker(β), hence
qβα(ES) = β(qα(ES)) = 0, and thus βα(ES) ⊆ Soc q. From here we get

γβα(ES) ⊆ γ(Soc q) ⊆ Soc r ⊆ SocR ⊆ r2 .

Using the inclusions above, we obtain a new string:

r = γβα(ER ⊕ ES) = γβα(ER) + γβα(ES) ⊆ γβα(ER) + r2 .

By Nakayama’s Lemma, γβα restricts to a surjective homomorphism ER → r.
As ER is an injective envelope of k over R, and SocR is contained in r2, we get

gclR = 1 or edimR ≤ 1 from Huneke and Vraciu’s theorem; see 4.6. On the other
hand, we know from Lemma 4.4 that S satisfies gclS = 1 or edimS ≤ 1, so from
Proposition 4.3 we conclude that gclQ = 1 or edimQ ≤ 1 holds. �

Finally, we take a look at the values of `(A)− `(Q), when Q is fixed.

Remark 4.8. Let Q be an artinian local ring; set edimQ = e and gclQ = g.
If e ≤ 1 or g ≥ 1, then for every n ≥ 0 there is an isomorphism Q ∼= A/I, with

A a Gorenstein local ring and `(A)− `(Q) = g + n.
Indeed, the case of e = 1 is clear from 4.2, so we assume e ≥ 2. When g ≥ 1, let

R → Q be a surjective homomorphism with R Gorenstein and `(R) = g. For S =
k[x]/(xn+2), the canonical surjection R×kS → R×kk ∼= R maps Soc(R)⊕Soc(S) to
zero, and so factors through R#kS. Theorem 2.8 shows that this ring is Gorenstein,
and formula (2.1.3) yields `(R#kS) = g + (n+ 2)− 2.

5. Cohomology algebras

Our next goal is to compute the cohomology algebra of a connected sum of ar-
tinian Gorenstein rings over their common residue field, in terms of the cohomology
algebra of the original rings. The computation takes up three consecutive sections.

In this section we describe some functorial structures on cohomology.

5.1. Let (P, p, k) be a local ring and κ : P → Q is a surjective ring homomorphism.
Let F be a minimal free resolution of k over P . One then has

Ext∗P (k, k) = HomP (F, k) and TorP∗ (k, k) = F ⊗P k .
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Homological products turns TorP∗ (k, k) into a graded-commutative algebra with
divided powers, see [9, 2.3.5] or [3, 6.3.5]; this structure is preserved by the map

Torκ∗(k, k) : TorP∗ (k, k)→ TorQ∗ (k, k) .

Composition products turn Ext∗P (k, k) into a graded k-algebra see [9, Ch. II, §3],
and the homomorphism of rings κ induces a homomorphism of graded k-algebras

Ext∗κ(k, k) : Ext∗Q(k, k)→ Ext∗P (k, k) .

For each n ∈ Z, the canonical bilinear pairing

ExtnP (k, k)× TorPn (k, k)→ k

given by evaluation is non-degenerate; we use it to identify the graded vector spaces

Ext∗P (k, k) = Homk(TorP∗ (k, k), k) .

Let π∗(P ) be the graded k-subspace of Ext∗P (k, k), consisting of those elements

that vanish on all products of elements in TorP+(k, k) and on all divided powers t(i)

of elements t ∈ TorP2j(k, k) with i ≥ 2 and j ≥ 1. As π∗(P ) is closed under graded
commutators in Ext∗P (k, k), it is a graded Lie algebra, called the homotopy Lie
algebra of P . The canonical map from the universal enveloping algebra of π∗(P )
to Ext∗P (k, k) is an isomorphism; see [3, 10.2.1]. The properties of Torκ∗(k, k) and
Ext∗κ(k, k) show that κ induces a homomorphism of graded Lie algebras

π∗(κ) : π∗(Q)→ π∗(P ) .

The maps Torκ∗(k, k), Ext∗κ(k, k), and π∗(κ) are functorial.

The next lemma can be deduced from [2, 3.3]. We provide a direct proof.

Lemma 5.2. Given a local ring (P, p, k) and an exact sequence of P -modules

0 // V
ι
// P

κ
// Q // 0

there is a natural exact sequence of k-vector spaces

0 // π1(Q)
π1(κ)

// π1(P ) // HomP (V, k)
ι̃
// π2(Q)

π2(κ)
// π2(P )

Proof. The classical change of rings spectral sequence

Ep,q2 = ExtpQ(k,ExtqP (Q, k)) =⇒
p

Extp+qP (k, k),

see [5, XVI.5.(2)4], yields a natural exact sequence of terms of low degree

(5.2.1)
0 // Ext1

Q(k, k)
Ext1κ(k,k)

// Ext1
P (k, k)

// Ext1
P (Q, k)

δ
// Ext2

Q(k, k)
Ext2κ(k,k)

// Ext2
P (k, k)

Next we prove Im(δ) ⊆ π2(Q). Indeed, TorP2 (k, k) contains no divided powers,

so π2(P ) is the subspace of k-linear functions vanishing on TorQ1 (k, k)2. Dualizing
the exact sequence above, one obtains an exact sequence

// TorP2 (k, k)
Torκ2 (k,k)

// TorQ2 (k, k)
Homk(δ,k)

// TorP1 (Q, k)

// TorP1 (k, k)
Torκ1 (k,k)

// TorQ1 (k, k) // 0
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of k-vector spaces. Since Torκ∗(k, k) is a homomorphism of algebras, it gives

TorQ1 (k, k)2 = (Im(Torκ1 (k, k))2 ⊆ Im(Torκ2 (k, k)) = Ker(Homk(δ, k)) .

Thus, for each ε ∈ Ext1
P (Q, k) one gets δ(ε)(TorQ1 (k, k)2) = 0, as desired.

The exact sequence in the hypothesis of the lemma induces an isomorphism

(5.2.2) ð : HomP (V, k)
∼=−−→ Ext1

P (Q, k) .

of k-vector spaces. Setting ι̃ = δð, and noting that one has π1(P ) = Ext1
P (k, k) and

π1(Q) = Ext1
Q(k, k), one gets the desired exact sequence from that for Ext’s. �

The following definition uses [2, 4.6]; see 6.6 for the standard definition.

5.3. A surjective homomorphism κ : P → Q is said to be Golod if the induced map
π∗(κ) : π∗(Q)→ π∗(P ) is surjective and its kernel is a free Lie algebra.

When κ is Golod Ker(π∗(κ)) is the free Lie algebra on a graded k-vector space
W , with W i = 0 for i ≤ 1 and rankkW

i = rankk Exti−2
P (Q, k) for all i ≥ 2.

Proposition 5.4. Let Ṽ denote the graded vector space with Ṽ i = 0 for i 6= 2 and

Ṽ 2 = HomP (V, k), let T(Ṽ ) be the tensor algebra of Ṽ , and let

ι∗ : T(Ṽ )→ Ext∗Q(k, k)

be the unique homomorphism of graded k-algebras with ι2 = ι̃; see Lemma 5.2.
If β, γ, κ, and κ′ are surjective homomorphisms of rings, the diagram

0 // V
ι
//

α

��

P
κ
//

β

��

Q //

γ

��

0

0 // V ′
ι′
// P ′

κ′
// Q′ // 0

commutes, and its rows are exact, then the following maps are equal:

ι∗ ◦ T(Homβ(α, k)) = Ext∗γ(k, k) ◦ ι̃′∗ : T(Ṽ ′)→ Ext∗Q(k, k) .

If V is cyclic and ι(V ) is contained in p2, or if the homomorphism κ is Golod,

then ι∗ is injective, and Ext∗Q(k, k) is free as a left and as a right T(Ṽ )-module.

Proof. The maps ι̃ and ι̃′ are the compositions of the rows in the following diagram,
which commutes by the naturality of the maps ð from (5.2.2) and δ from (5.2.1):

HomP (V, k)
ð

// Ext1
P (Q, k)

δ
// Ext2

Q(k, k)

HomP ′(V
′, k)

ð′
//

Homβ(α,k)

OO

Ext1
P ′(Q

′, k)

Ext1π(β,k)

OO

δ′
// Ext2

Q′(k, k)

Ext2γ(k,k)

OO

Set W 2 = ι2(Ṽ 2). The subalgebra E = ι∗(T(Ṽ )) of Ext∗Q(k, k) is generated

by W 2. Lemma 5.2 shows that W 2 is contained in π2(Q), so E is the universal
enveloping algebra of the Lie subalgebra ω∗ of π∗(Q), generated by W 2.

The Poincaré-Birkhoff-Witt Theorem (e.g., [3, 10.1.3.4]) implies that the univer-
sal enveloping algebra U of π∗(Q) is free as a left and as a right E-module. Recall,
from 5.1, that U equals Ext∗Q(k, k). Thus, it suffices to show that ι∗ is injective.

This is equivalent to injectivity of ι2 plus freeness of the associative k-algebra E;
the latter condition can be replaced by freeness of the Lie algebra ω∗.
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If V is contained in p2, then Ext1
κ(k, k) is surjective, so ι2 is injective by Lemma

5.2. If V is, in addition, cyclic, then W 2 is a k-subspace of π∗(Q), generated by a
non-zero element of even degree. Any such subspace is a free Lie subalgebra.

When κ is Golod, π1(κ) is surjective by 5.3, so ι2 is injective by Lemma 5.2.
Now Kerπ∗(κ) is a free Lie algebra, again by 5.3, hence so is its subalgebra ω∗. �

6. Cohomology of fiber products

The cohomology algebra of fiber products is known, and its structure is used in
the next section. To describe it, we recall a construction of coproduct of algebras.

6.1. Let B and C be graded k-algebras, with B0 = k = C0 and Bn = 0 = Cn for
all n < 0. Thus, there exist isomorphisms B ∼= T(X)/K and C ∼= T(Y )/L, where
X and Y are graded k-vector spaces, and K and L are ideals in the respective
tensor algebras, satisfying K ⊆ X ⊗k X and L ⊆ Y ⊗k Y . The algebra B t C =
T(X ⊕ Y )/(K,L) is a coproduct of B and C in the category of graded k-algebras.

Before proceeding we fix some notation.

6.2. When (R, r, k) and (S, s, k) are local rings, we let εR : R → k and εS : S → k
denote the canonical surjections, and form the commutative diagram

ξ =

R
εR

''PPPPPPPP

R×k S
σ

((QQQQQQQQ

ρ
66mmmmmmmm

k

S
εS

77nnnnnnnn

(6.2.1)

of local rings. The induced commutative diagram of graded k-algebras

Ext∗R(k, k)
Ext∗ρ(k,k)

++VVVVVVVVV

k

66mmmmmmmmm

((QQQQQQQQQ Ext∗R×kS(k, k)

Ext∗S(k, k)
Ext∗σ(k,k)

33hhhhhhhhh

(6.2.2)

see (5.1), determines a homomorphism of graded k-algebras

ξ∗ : Ext∗R(k, k) t Ext∗S(k, k) −→ Ext∗R×kS(k, k) .(6.2.3)

The following result is [16, 3.4]; for k-algebras, see also [18, Ch. 3, 1.1].

6.3. The map ξ∗ in (6.2.3) is an isomorphism of graded k-algebras.

To describe some invariants of modules over fiber products, we recall that the
Poincaré series of a finite module M over a local ring (Q, q, k) is defined by

PQM =
∑
i

rankk ExtiQ(M,k) zi ∈ Z[[z]] .

6.4. Dress and Krämer [7, Thm. 1] proved that each finite R-module M satisfies

PR×kSM = PRM ·
PSk

PRk + PSk − PRk PSk
.

Formulas for Poincaré series of S-modules are obtained by interchanging R and S.
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Proposition 6.5. Let (R, r, k) and (S, s, k) be local rings and let ϕ : R → R′ and
ψ : S → S′ be surjective homomorphisms of rings.

For the induced map ϕ×k ψ : R×k S → R′ ×k S′ one has an equality

PR×kSR′×kS′ =
PRR′P

S
k + PSS′P

R
k − PRk PSk

PRk + PSk − PRk PSk
.

Proof. Set I = Ker(ϕ) and J = Ker(ψ). The first equality below holds because one
has Ker(ϕ×k ψ) = I ⊕ J as ideals; the second one comes from 6.4:

PR×kSR′×kS′ = 1 + z · (PR×kSI + PR×kSJ )

= 1 + z ·
(

PRI P
S
k

PRk + PSk − PRk PSk
+

PSJ P
R
k

PRk + PSk − PRk PSk

)
= 1 +

z

PRk + PSk − PRk PSk
·
(
PRR′ − 1

z
· PSk +

PSS′ − 1

z
· PRk

)
=
PRR′P

S
k + PSS′P

R
k − PRk PSk

PRk + PSk − PRk PSk
. �

We recall Levin’s [13] original definition of Golod homomorphism in terms of
Poincaré series. The symbol 4 stands for termwise inequality of power series.

6.6. Every surjective ring homomorphism R→ R′ with (R, r, k) local satisfies

PR
′

k 4
PRk

1 + z − zPRR′
,

see, for instance, [3, 3.3.2]. Equality holds if and only if R→ R′ is Golod.

The following result is due to Lescot [12, 4.1].

Corollary 6.7. If ϕ and ψ are Golod, then so is ϕ×k ψ.

Proof. When the homomorphisms ϕ and ψ are Golod the following equalities hold:

1

PR
′×kS′

k

=
1

PR
′

k

+
1

PS
′

k

− 1

=
(1 + z − zPRR′)

PRk
+

(1 + z − zPSS′)
PSk

− 1

=
(1 + z − zPRR′)PSk + (1 + z − zPSS′)PRk − PRk PSk

PRk P
S
k

=
(1 + z)(PRk + PSk − PRk PSk )− z(PRk PSS′ + PSk P

R
R′ − PRk PSk )

PRk P
S
k

=
(1 + z − zPR×kSR′×kS′)

(
PRk + PSk − PRk PSk

)
PRk P

S
k

=
1 + z − zPR×kSR′×kS′

PR×kSk

.

The first and last come from 6.4, the second from the definition, the penultimate
one from the proposition. Stringing them together, we see that ϕ×kψ is Golod. �
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7. Cohomology of connected sums

We compute the cohomology algebra of a connected sum of local rings over
certain Golod homomorphisms, using amalgams of graded k-algebras.

7.1. Let β : B ← A→ C : γ be homomorphisms of graded k-algebras.
Let B tA C denote the quotient of the coproduct B t C, see 6.1, by the two-

sided ideal generated by the set {β(a) − γ(a) | a ∈ A}. It comes equipped with
canonical homomorphisms of graded k-algebras γ′ : B → BtAC ← C :β′, satisfying
γ′β = β′γ. The universal property of coproducts implies that BtAC is an amalgam
of β and γ in the category of graded k-algebras.

If B and C are free as left graded A-modules and as right graded A-modules,
then Lemaire [11, 5.1.5 and 5.1.10] shows that the maps γ′ and β′ are injective, and

(7.1.1)
1

HBtAC
=

1

HB
+

1

HC
− 1

HA
.

7.2. Given a connected sum diagram (2.0.1) with local rings (R, r, k) and (S, s, k),
T = k, and canonical surjection εR and εS , set R′ = R/ιR(V ) and S′ = S/ιS(V ).

We refine (2.0.1) to a commutative diagram

(7.2.1) Ξ =

R ϕ
// //

εR

��

R′

  

V

ιR
//

ι
//

ιS //

R×k S

ρ
@@ @@�������
κ
// //

σ
�� ��

======= R#kS

ρ′
@@ @@������� κ

// //

σ′ �� ��
======= R′ ×k S′ // //

````AAAAAAA

~~~~}}}}}}}
k

S

εS

AA

ψ
// // S′

>>

where ι(v) = (ιR(v), ιS(v)) and two-headed arrows denote canonical surjections.
Proposition 5.4 now gives a commutative diagram of graded k-algebras:

(7.2.2)

Ext∗R′(k, k)

$$
HHHHHHHHHHH

Ext∗
ρ′ (k,k)

{{wwwwwwwwwww

T(Ṽ )

ι∗R
//

ι∗
//

ι∗S //

Ext∗R#kS
(k, k) Ext∗R′×kS′(k, k)

Ext∗κ(k,k)
oo

Ext∗S′(k, k)

::vvvvvvvvvvv

Ext∗
σ′ (k,k)

ccGGGGGGGGGGG

By 7.1, the preceding diagram defines a homomorphism of graded k-algebras

(7.2.3) Ξ∗ : Ext∗R′(k, k) tT(Ṽ ) Ext∗S′(k, k) −→ Ext∗R#kS
(k, k) .

Theorem 7.3. Assume that ιR and ιS in 7.2 are injective and non-zero.
If the homomorphism κ : R#kS → R′ ×k S′ is Golod, in particular, if

(a) the rings R and S are Gorenstein of length at least 3, or
(b) the homomorphisms ϕ and ψ are Golod,
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then Ξ∗ in (7.2.3) is an isomorphism, and the canonical maps below are injective:

Ext∗R′(k, k)
Ext∗

ρ′ (k,k)
−−−−−−−→ Ext∗R#kS

(k, k)
Ext∗

σ′ (k,k)
←−−−−−−− Ext∗S′(k, k) .

Corollary 7.4. When κ is Golod, for every R′-module N one has

PR#kS
N = PR

′

N ·
PS
′

k

PR
′

k + PS
′

k − (1− rz2) · PR′k PS
′

k

,

where r = rankk V (and thus, r = 1 under condition (a)). Formulas for Poincaré
series of S′-modules are obtained by interchanging R′ and S′.

In preparation for the proofs, we review a few items.

7.5. When (P, p, k) is a local ring and κ : P → Q a surjective homomorphism with
pKer(κ) = 0, the following inequality holds, with equality if and only if κ is Golod:

PQk 4
PPk

1− rankk(Ker(κ)) · z2 · PPk
.

Indeed, the short exact sequence of P -modules 0→ Ker(κ)→ P → Q→ 0 yields
PPQ = 1 + rankk(Ker(κ)) · z · PPk , so the assertion follows from 6.6.

The Golod property may be lost under composition or decomposition, but:

Lemma 7.6. Let P
κ−→ Q

κ−→ P ′ be surjective homomorphisms of rings.
When pKer(κκ) = 0 holds, the map κκ is Golod if and only if κ and κ are.

Proof. Set rankk Ker(κ) = r and rankk Ker(κ) = r′. From 7.5 one gets

PP
′

k 4
PQk

1− r′z2 · PQk
4

PPk
1− rz2 · PPk

1− r′z2 · PPk
1− rz2 · PPk

=
PPk

1− (r + r′)z2 · PPk
.

One has rankk Ker(κκ) = r + r′, so the desired assertion follows from 7.5. �

7.7. When (Q, q, k) is an artinian Gorenstein ring with edimQ ≥ 2, the canonical
surjection Q→ Q/SocQ is a Golod homomorphism; see [15, Theorem 2].

Proof of Theorem 7.3. For Q = R#kS and P ′ = R′ ×k S′, we have a commutative
diagram, with θ the canonical surjection, see 7.1, and ξ∗ the bijection from 6.3:

Ext∗R′(k, k) tT(Ṽ ) Ext∗S′(k, k) Ξ∗
// Ext∗Q(k, k)

Ext∗R′(k, k) t Ext∗S′(k, k)
∼=
ξ∗

//

θ

OO

Ext∗P ′(k, k)

Ext∗κ(k,k)

OO

The map Ext∗κ(k, k) is surjective because κ is Golod, see 5.3, so Ξ∗ is surjective.
Set D = Ext∗R′(k, k) tT(Ṽ ) Ext∗R′(k, k). By Proposition 5.4, ι∗R, ι∗, and ι∗S turn

their targets into free graded T(Ṽ )-modules, left and right, so (7.1.1) gives:

1

HD
=

1

PR
′

k

+
1

PS
′

k

− 1

HT(Ṽ )

=
1

PR
′

k

+
1

PS
′

k

− (1− rz2) .
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On the other hand, from 7.5 and 6.4 we obtain

(7.8.1)
1

PQk
=

1

PP
′

k

+ rz2 =

(
1

PR
′

k

+
1

PS
′

k

− 1

)
+ rz2 .

Thus, one has HD = PQk . This implies that the surjection Ξ∗ is an isomorphism.
The injectivity of Ext∗ρ′(k, k) and Ext∗σ′(k, k) now results from Proposition 5.4.
It remains to show that condition (a) or (b) implies that κ is Golod.
(a) Let R and S be artinian Gorenstein of length at least 3. The socle of R is

equal to the maximal non-zero power of r, and r2 = 0 would imply `(R) = 2, so we
have SocR ⊆ r2. By symmetry, we also have SocS ⊆ s2.

Set P = R ×k S. By definition, Q equals P/pP , where p is a non-zero element
in SocP . The maximal ideal p of P is equal to r ⊕ s, so SocP = SocR ⊕ SocS is
in r2 ⊕ s2. This gives the equality below, and (1.5.1) the first inequality:

edimQ = edimP ≥ edimR+ edimS − edim k ≥ 2 .

Since the ring Q is artinian Gorenstein by Theorem 2.8, and the kernel of the map
Q→ P ′ is non-zero and is in SocQ, this homomorphism is a Golod by 7.7.

(b) If ϕ and ψ are Golod, then so is ϕ×k ψ by Corollary 6.7. From the equality
ϕ×k ψ = κκ and Lemma 7.6, one concludes that κ is Golod. �

Proof of Corollary 7.4. As Extρ′(k, k) is injective, the first equality in the string

PQN = PR
′

N ·
PQk
PR

′
k

= PR
′

N ·
PS
′

k

PR
′

k + PS
′

k − (1− rz2)PR
′

k PS
′

k

follows from a result of Levin; see [14, 1.1]. The second one comes from (7.8.1). �

8. Indecomposable Gorenstein rings

In this section we approach the problem of identifying Gorenstein rings that
cannot be decomposed in a non-trivial way as a connected sum of Gorenstein local
rings. Specifically, we prove that complete intersection rings have no such decom-
position over regular rings, except in a single, well understood special case.

Recall that, by Cohen’s Structure Theorem, the r-adic completion R̂ of a local

ring(R, r, k) is isomorphic to R̃/K, with (R̃, r̃, k) regular local and K ⊆ r̃2. One
says that R is complete intersection (of codimension c) if K can be generated by

a R̃-regular sequence (of length c). A hypersurface ring is a complete intersection
ring of codimension 1; it is quadratic in case K is generated by an element in r̃2r r̃3.

We also need homological characterizations of complete intersection rings:

8.1. A local ring (R, r, k) is complete intersection if and only if π3(R) = 0, if and
only if PRk (z) = (1 + z)b/(1− z)c with b, c ∈ Z, see [9, 3.5.1].

If R is complete intersection, then codimR = rankk π
2(R) = c; see [9, 3.4.3].

Now we return to the setup and notation of Section 2, which we recall:

8.2. The rings in the diagram (2.0.1) are local: (R, r, k), (S, s, k) and (T, t, k).
The maps εR and εS are surjective; set I = Ker(εR) and J = Ker(εS).
The maps ιR and ιS are injective.

Theorem 8.3. When R and S are Gorenstein of dimension d, T is regular of
dimension d, and ιR(V ) = (0 : I) and ιS(V ) = (0 : J), the ring R#TS is a local
complete intersection if and only if one of the following conditions holds:
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(a) R is a quadratic hypersurface ring and S is a complete intersection ring.
In this case, R#TS ∼= S.

(b) S is a quadratic hypersurface ring and R is a complete intersection ring.
In this case, R#TS ∼= R.

(c) R and S are non-quadratic hypersurface rings.
In this case, codim(R#TS) = 2.

Proof. Let (P, p, k) denote the local ring R×T S, see Lemma 1.2, and Q = R#TS.
If e(R) = 1 or e(S) = 1, then R#TS = 0 by Proposition 2.6 and Theorem 2.8.

Else, the ring Q is local, see 2.2; let q denote its maximal ideal.
If e(R) = 2, then Q ∼= S by Proposition 2.6, so Q and S are complete intersection

simultaneously. The case e(S) = 2 is similar, so we assume e(R) ≥ 3 and e(S) ≥ 3.
The P -modules P , Q, R, S, and T are Cohen-Macaulay of dimension d; see

Proposition 1.7 and Theorem 2.8. Tensoring the diagram (2.0.1) with P [y]p[y] over
P , we may assume that k is infinite. Choose a sequence x in P that is regular
on P and T and satisfies `(T/xT ) = e(T ); see 2.5. Since T is a regular ring,
we have e(T ) = 1, hence T/xT = k, so the image of x in T is a minimal set of
generators of t. The surjective homomorphism Q→ T induces a surjective k-linear
map q/q2 → t/t2, so the image of x in Q extends to a minimal generating set of q.

Since x is a system of parameters for P , and Q, R, and S are d-dimensional
Cohen-Macaulay P -modules, x is also a system of parameters for each one of them.
Thus, x is a regular sequence on Q, R, and S. Since x is part of a minimal set of
generators of q, the ring Q is complete intersection of codimension c if and only if
so is Q/xQ. Also, R and S are Gorenstein if and only so are R/xR and S/xS, and
they satisfy `(R) ≥ e(R) ≥ 3 and `(S) ≥ e(S) ≥ 3; see 2.5. Lemma 2.3 gives an
isomorphism of rings Q/xQ ∼= (R/xR)#k(S/xS). Thus, after changing notation,
for the rest of the proof we may assume Q = R#kS, where R and S are artinian
Gorenstein rings that are not quadratic hypersurfaces.

Let Q be complete intersection and assume edimR ≥ 2. Set R′ = R/SocR.
Theorem 7.3 shows that the homomorphism Q → R′ induces an injective homo-
morphism of cohomology algebras, and hence one of homotopy Lie algebras; see 5.1.
This gives the second inequality in the following string, where the first inequality
comes from 5.3 (because R→ R′ is Golod by 7.7), and the equality from 8.1:

rankk Ext1
R(R′, k) ≤ rankk π

3(R′) ≤ rankk π
3(Q) = 0 .

It follows that R′ is free as an R-module. On the other hand, it is annihilated by
SocR, and this ideal is non-zero because R is artinian. This contradiction implies
edimR = 1, so R is a hypersurface ring. By symmetry, so is S.

Conversely, if R and S are hypersurface rings, then Corollary 7.4 gives

PQk =
1

1− z
·

1

1− z
1

1− z
+

1

1− z
− (1− z2) · 1

1− z
· 1

1− z

=
1

(1− z)2
.

This implies that Q is a complete intersection ring of codimension 2; see 8.1. �
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schémas et des morphismes de schémas (Quatrième partie), Inst. Hautes Études Sci. Publ.
Math. 32, 1967.

[9] T. H. Gulliksen, G. Levin, Homology of local rings, Queen’s Papers in Pure and Applied

Math. 20, Queen’s University, Kingston, Ont., 1969.
[10] C. Huneke, A. Vraciu, Rings that are almost Gorenstein, Pacific J. Math. 225 (2006), 85 -

102.
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