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Abstract. We consider methods for large-scale unconstrained minimization based on finding an
approximate minimizer of a quadratic function subject to a two-norm trust-region inequality con-
straint. The Steihaug-Toint method uses the conjugate-gradient algorithm to minimize the quadratic
over a sequence of expanding subspaces until the iterates either converge to an interior point or cross
the constraint boundary. Recent extensions of the Steihaug-Toint method allow the accuracy of the
trust-region step to be specified, thereby allowing the overall cost of computing the problem functions
to be balanced against the cost of computing the trust-region steps. However, if a preconditioner
is used with the conjugate-gradient algorithm, the Steihaug-Toint method requires the trust-region
norm to be defined in terms of the preconditioning matrix. If a different preconditioner is used for
each subproblem, the shape of the trust-region can change substantially from one subproblem to
the next, which invalidates many of the assumptions on which standard methods for adjusting the
trust-region radius are based. In this paper we propose a method that allows the trust-region norm
to be defined independently of the preconditioner. The method solves the inequality constrained
trust-region subproblem over a sequence of evolving low-dimensional subspaces. Each subspace in-
cludes an accelerator direction obtained from a Newton method applied to an primal-dual interior
method. A crucial property of this direction is that it can be computed by applying the precondi-
tioned conjugate-gradient method to a positive-definite system in both the primal and dual variables
of the trust-region subproblem.
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1. Introduction. The jth iteration of a trust-region method for unconstrained
minimization involves finding an approximate solution of the trust-region subproblem:

minimize
s∈Rn

Qj(s) ≡ gT
j s + 1

2
sTHjs subject to ‖s‖ ≤ δj , (1.1)

where δj is a given positive trust-region radius and Qj(s) is the quadratic model of
a scalar-valued function with gradient gj and Hessian Hj . The focus of this paper is
on the solution of (1.1) when the matrix Hj is best accessed as an operator for the
definition of matrix-vector products of the form Hjv.

In this context, Steihaug [33] and Toint [34] independently proposed methods
for solving (1.1) when the trust-region is defined in terms of the two-norm, i.e., the
constraint is ‖s‖2 ≤ δj . If Hj is positive definite, the Newton equations Hjs = −gj

define the unconstrained minimizer of (1.1). The Steihaug-Toint method begins with
the application of the conjugate-gradient (CG) method to the Newton equations.
This process is equivalent to minimizing Qj over a sequence of expanding subspaces
generated by the conjugate-gradient directions. As long as the curvature of Qj remains
positive on each of these subspaces, the CG iterates steadily increase in norm and the
CG iterates either converge inside the trust region or form a piecewise-linear path with
a unique intersection-point on the trust-region boundary. When Hj is not positive
definite, a solution of (1.1) must lie on the boundary of the trust region and the CG
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method may generate a direction p along which Qj has zero or negative curvature. In
this case, the algorithm is terminated at the point on p that intersects the boundary
of the trust region.

If the Steihaug-Toint method is terminated on the boundary of the trust region,
the step may bear little relation to an optimal solution of (1.1). This means that, in
contrast to line-search methods, it is not possible to choose an approximate solution
that balances the cost of computing the problem functions with the cost of computing
the trust-region step (see, e.g., [6] for more discussion of this issue). Several extensions
of the Steihaug-Toint method have been proposed that allow the accuracy of a con-
strained solution to be specified. Gould, Lucidi, Roma, and Toint [15] proposed the
generalized Lanczos trust-region (GLTR) algorithm, which finds a constrained min-
imizer of (1.1) over a sequence of expanding subspaces associated with the Lanczos
process for reducing Hj to tridiagonal form. Erway, Gill and Griffin [6] continue to op-
timize on the trust-region boundary using the sequential subspace minimization (SSM)
method. This method, first proposed by Hager [17, 18], approximates a constrained
minimizer over a sequence of evolving low-dimensional subspaces that do not neces-
sarily form a nested sequence. Erway, Gill and Griffin use a basis for each subspace
that includes an accelerator vector defined by a primal-dual augmented Lagrangian
method.

In many applications the convergence rate of CG can be significantly improved
by using a preconditioner, which is usually available in the form of a positive-definite
operator M−1

j that clusters the eigenvalues of M−1
j Hj . If a preconditioned CG method

is used, the increasing norm property of the iterates holds only in the weighted norm
‖x‖Mj

= (xTMjx)1/2, which mandates the use of a trust region of the form ‖s‖Mj
≤ δj .

Unfortunately, if a different preconditioner is used for each trust-region subproblem,
the shape of the trust-region may alter dramatically from one subproblem to the
next. Since a fundamental tenet of trust-region methods is that the value of δj be
used to determine the value of δj+1, the effectiveness of the trust-region strategy
may be seriously compromised. We emphasize the distinction between the constant
weighted trust region ‖Ns‖2 = (sTNTNs)1/2 ≤ δj typically associated with a constant
nonsingular scaling matrix N , and the varying trust region ‖s‖Mj

≤ δj induced by
the preconditioner.

In this paper we propose a CG-based method that does not use the Steihaug-
Toint expanding subspace idea, and hence may be used safely in conjunction with CG

preconditioning. The Steihaug-Toint method and its extensions proceed with the un-
constrained minimization of Qj and consider the constraint only if the unconstrained
solution lies outside the trust-region. In the proposed method, the constrained prob-
lem is minimized directly over a sequence of evolving low-dimensional subspaces that
include a basis vector defined in terms of a primal-dual interior method applied to
(1.1). A crucial property of this direction is that it can be computed by applying the
preconditioned CG method to a positive-definite system in both the primal and dual
variables of the constrained problem. The subspace also includes a simple, inexpensive
estimate of an eigenvector associated with the least eigenvalue of Hj .

Finally, we mention several Krylov-based iterative methods that are intended to
find a solution of the problem of minimizing Q(s) = gTs+ 1

2
sTHs subject to the equality

constraint ‖s‖2 = δ. The methods of Sorensen [32], Rojas and Sorensen [28], Rojas,
Santos and Sorensen [27], and Rendl and Wolkowicz [26] approximate the eigenvalues
of a matrix obtained by augmenting H by a row and column. In addition, line-search
subspace minimization methods for general large-scale unconstrained optimization
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have been considered by Fenelon [7], Gill and Leonard [13, 14], Nazareth [22], and
Siegel [29, 30].

The paper is organized in five sections. In Section 2, we review the properties of
the Steihaug-Toint method and its extensions. In Section 3 we formulate the proposed
SSM method and consider some properties of the primal-dual interior-point method
used to generate the SSM accelerator direction. Further details of the algorithmic
components are given in Section 4, which includes numerical comparisons with the
Steihaug-Toint method on unconstrained problems from the CUTEr test collection
(see Bongartz et al. [1] and Gould, Orban and Toint [16]). Finally, Section 5 includes
some concluding remarks and observations.

1.1. Notation and Glossary. Unless explicitly indicated, ‖ · ‖ denotes the
vector two-norm or its subordinate matrix norm. The symbol ei denotes the ith
column of the identity matrix I, where the dimensions of ei and I depend on the
context. The eigenvalues of a real symmetric matrix H are denoted by {λi}, where
λn ≤ λn−1 ≤ · · · ≤ λ1. The associated eigenvectors are denoted by {ui}. An eigen-
value λ and a corresponding normalized eigenvector u such that λ = λn are known as
a leftmost eigenpair of H . The Moore-Penrose pseudoinverse of a matrix A is denoted
by A†. Some sections include algorithms written in a Matlab-style pseudocode. In
these algorithms, brackets will be used to differentiate between computed and stored
quantities. For example, the expression [Ax] := Ax signifies that the matrix-vector
product of A with x is computed and assigned to the vector [Ax]. Similarly, if P is
a matrix with columns p1, p2, . . . , pm, then [AP ] denotes the matrix with columns
[Ap1], [Ap2], . . . , [Apm].

2. Background. In this section we drop the suffix j and focus on a typical
trust-region subproblem of the form

minimize
s∈Rn

Q(s) ≡ gTs + 1

2
sTHs subject to ‖s‖ ≤ δ. (2.1)

Toint [34] and Steihaug [33] independently proposed CG-based methods for solving
the trust-region problem. The methods begin by applying the CG method to the
Newton equations Hs = −g under the assumption that H is positive definite. The
CG iterates {sk} have the form

s0 = 0, sk = sk−1 + αk−1pk−1, k ≥ 1,

where the CG directions {pk} satisfy the conjugacy conditions pT
ℓHpm = 0, for all

0 ≤ ℓ ≤ k and 0 ≤ m ≤ k such that ℓ 6= m. Each iterate sk is such that

sk = argmin
s∈Sk

{gTs + 1

2
sTHs, ‖s‖ ≤ δ},

where Sk is a k-dimensional subspace spanned by the directions p0, p1, . . . , pk−1. The
set Sk is a member of a sequence of expanding subspaces {Sk} such that Sk−1 ⊂ Sk.

If H is positive definite and the Newton step −H−1g lies inside the trust region,
then the CG iterations are terminated with the iterate sk such that ‖g+Hsk‖ ≤ τ‖g‖,
where τ is a given positive tolerance. For small values of τ , this sk approximates the
unconstrained step −H−1g.

Steihaug establishes the key property that if pT
ℓHpℓ > 0 for 0 ≤ ℓ ≤ k − 1, then

the norms of the CG iterates {sk} are strictly increasing in the two-norm, i.e., ‖sk‖2 >
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‖sk−1‖2. This implies that there is no reason to continue computing CG iterates once
they cross the trust-region boundary. In particular, if one of the conditions

pT
k−1Hpk−1 ≤ 0 or ‖sk−1 + αk−1pk−1‖2 ≥ δ (2.2)

holds, then the solution of (2.1) lies on the boundary of the trust region and the
CG iterations are terminated. If one of the conditions (2.2) hold, Steihaug’s method
redefines the final iterate as sk = sk−1 + γk−1pk−1, where γk−1 is a solution of the
one-dimensional trust-region problem

minimize
γ

Q(sk−1 + γpk−1) subject to ‖sk−1 + γpk−1‖2 ≤ δ.

Toint redefines sk as the Cauchy point if pT
k−1Hpk−1 ≤ 0. Either choice gives an

approximate solution that is always at least as good as the Cauchy point. As a result,
the underlying trust-region algorithm is globally convergent to a first-order point
when endowed with an appropriate strategy for adjusting the trust-region radius (see
Powell [24, 25]).

The Steihaug-Toint method terminates at the first boundary point, which implies
that sk may be a poor approximate solution of (2.1) in the constrained case. This lack
of accuracy control was noted by Gould, Lucidi, Roma and Toint [15], who proposed
solving the constrained problem using the generalized Lanczos trust-region (GLTR)
method. This method solves (2.1) on an expanding sequence of subspaces generated
by the vectors v0, v1, . . . , vk−1 associated with the Lanczos process for reducing H
to tridiagonal form. The subspace minimization problem at the kth step is given by

minimize
y∈Rk

gTVky + 1

2
yT Tky, subject to ‖y‖2 ≤ δ, (2.3)

where Tk is tridiagonal and Vk is the matrix of Lanczos vectors. The reduced problem
(2.3) is solved using a variant of the Moré-Sorensen algorithm [20] that exploits the
tridiagonal structure of the reduced Hessian Tk. Once an optimal yk for the reduced
problem has been found, the solution sk = Vkyk is computed by repeating the Lanczos
recurrence and regenerating the columns of Vk.

Erway, Gill and Griffin [6] propose the phased sequential subspace minimization
(phased-SSM) method, which, like the GLTR method, has a constrained second phase
if there is no minimizer of Q inside the trust-region. The iterates of the second phase
solve the constrained problem on a sequence of low-dimensional subspaces. At the
start of the kth iteration of the second phase, sk−1 is the current best estimate of the
solution of (2.1), and σk−1 is an approximate Lagrange multiplier associated with the
constraint ‖s‖2 = δ. The kth iterate (sk, σk) is a primal-dual solution of the reduced
equality-constraint problem

minimize
s∈Rn

Q(s) subject to ‖s‖2 = δ, s ∈ Sk = span{sk−1, zk, sa
k},

where zk is the current best estimate of the leftmost eigenvector of H , and sa
k is an

“accelerator” direction that is intended to increase the rate of convergence. The use
of the previous iterate sk−1 as a generator of Sk guarantees that Q(sk) < Q(sk−1).
The accelerator direction is obtained from a regularized Newton method applied to
the constrained problem. The method includes a parameter that allows the user to
take advantage of the tradeoff between the overall number of function evaluations and
matrix-vector products. At one extreme, a low-accuracy solution comparable to the
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Steihaug-Toint point is obtained. Overall, trust-region methods using low-accuracy
subproblem solutions require fewer matrix-vector products but more function evalua-
tions. At the other extreme, high-accuracy solutions minimize the number of function
evaluations at the expense of increasing the number of matrix-vector products.

The Steihaug-Toint approach is a reliable and efficient way of applying the CG

method to large-scale optimization. In addition, recent extensions to the Steihaug-
Toint method add the ability to increase the accuracy of the trust-region solution
when needed. However, there are some situations where the Steihaug-Toint method
may not be efficient.

Preconditioning the conjugate-gradient method. In the final iterations of a
trust-region method, it is usually the case that δ is relatively large and the trust-region
constraint is not active. For these iterations, a large number of conjugate-gradient
steps may be needed to find an approximate minimizer of Q. The rate of convergence
of the CG iterates can be significantly improved by using a preconditioner. In many
applications there is a natural preconditioner available in the form of a positive-
definite operator M−1 such that the eigenvalues of M−1H are clustered into a small
number of groups. However, the increasing norm property of the CG iterates holds
only in the weighted norm ‖x‖M = (xTMx)1/2, which imposes a trust region of the
form ‖s‖M ≤ δ. If a different preconditioner is used for each trust-region subproblem,
the shape of the trust-region may change dramatically from one subproblem to the
next. Since a fundamental tenet of trust-region methods is that the value of δ for
one subproblem is a good estimate of δ for the next, the efficiency of the strategy for
updating δ may be seriously compromised.

Convergence to second-order points. The Steihaug-Toint method and its
extensions are first-order methods, in the sense that they are guaranteed to converge
to points that satisfy the first-order necessary conditions for optimality (i.e., g = 0). If
direct matrix factorizations are used, it is possible to approximate a global minimizer
of the trust-region subproblem and thereby guarantee convergence to points that
satisfy the second-order conditions for optimality, i.e., points at which the gradient is
zero and the Hessian is positive semidefinite (see, e.g., Moré and Sorensen [20]). We
know of no method based on the conjugate-gradient method that is guaranteed to find
a global solution of (1.1) in finite-precision. For example, the Steihaug-Toint method
is not guaranteed to compute a solution on the boundary when Q is unbounded below.
Suppose that H is indefinite and Q(s) has a stationary point ŝ such that ‖ŝ‖ < δ. If
H is positive definite on the Krylov subspace spanned by g, Hg, H2g, . . . , then CG

will terminate at the interior point ŝ. Notwithstanding these theoretical difficulties, it
seems worthwhile devising strategies that have the potential of providing convergence
to a global solution in “most cases”.

Efficiency for repeated constrained subproblems. When solving a difficult
problem, it is often the case that a sequence of problems of the form (1.1) must be
solved in which only the trust-region radius δ is changing. However, the Steihaug-
Toint method is unable to exploit this information during the generation of the ex-
panding sequence of subspaces.

In the next section, we propose a CG-based method that is designed to mitigate
these ill-effects. (i) The method allows the use of CG preconditioning in conjunction
with a standard method for updating the trust-region radius. (ii) The likelihood of
approximating the global minimizer of (1.1) is increased by the computation of an
approximate left-most eigenpair of H that is not based on the CG Krylov subspace.
In particular, it allows the computation of a nonzero step when g = 0 and H is
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indefinite. (iii) Information garnered during the solution of one subproblem may be
used to expedite the solution of the next.

3. A SSM Method with Interior-Point Acceleration. The Steihaug-Toint
method and its extensions start with the unconstrained minimization of Q and con-
sider the constraint only if the unconstrained solution lies outside the trust-region. In
the proposed interior-point sequential subspace minimization (IP-SSM) method, the
inequality constrained problem (2.1) is minimized directly over a sequence of low-
dimensional subspaces, giving a sequence of reduced inequality constraint problems
of the form

minimize
s∈Rn

Q(s) subject to ‖s‖ ≤ δ, s ∈ Sk = span{sk−1, zk, sa
k}, (3.1)

where sk−1 is the current best estimate of the subproblem solution, zk is the current
best estimate of un (the leftmost eigenvector of H), and sa

k is an interior-point acceler-
ator direction. The Lanczos-CG algorithm is used to define the accelerator direction,
and the Lanczos vectors also provide independent vectors for the definition of low-
dimensional subspaces associated with the reduced versions of the leftmost eigenvalue
problem.

3.1. Definition of the accelerator direction. The accelerator direction sa
k is

an approximate Newton step for minimizing a primal-dual barrier function associated
with the problem

minimize
s∈Rn

Q(s) = gTs + 1

2
sTHs subject to 1

2
δ2 − 1

2
sTs ≥ 0. (3.2)

This is an inequality constrained optimization problem with Lagrange multiplier σ
and Lagrangian function

L(s, σ) = Q(s) − σ(1

2
δ2 − 1

2
sTs) = Q(s) − σc(s),

where c(s) denotes the constraint residual c(s) = 1

2
δ2 − 1

2
sTs. The necessary and

sufficient conditions for a global solution of (3.2) imply the existence of a vector s and
scalar σ such that

(H + σI)s = −g, with H + σI positive semidefinite,
c(s)σ = 0, with σ ≥ 0 and c(s) ≥ 0.

(3.3)

(For a proof, see, e.g., Gay [11], Sorensen [31], Moré and Sorensen [21], or Conn,
Gould and Toint [3].) The subproblem (3.2) is said to be degenerate if g is orthogonal
to the invariant subspace associated with λn and ‖sL‖ < δ, where sL is the least-
length solution of the (necessarily compatible) system (H − λnI)s = −g (i.e., sL =
−(H − λnI)†g). In the degenerate case, there are two situations to consider. If λn

is positive, the quantities σ = 0 and s = −H−1g satisfy the optimality conditions
(3.3) because ‖s‖ < ‖sL‖ < δ. Alternatively, if λn is negative or zero, the equations
(H + σI)s = −g cannot be used alone to determine the optimal s. However, the
leftmost eigenvector un is a null vector of H − λnI, and there exists a scalar τ such
that

(H − λnI)(sL + τun) = −g and ‖sL + τun‖ = δ.

In this case, σ = −λn and s = sL + τun satisfy the optimality conditions (3.3) and
thereby constitute a global solution of (3.2).
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The accelerator direction is derived from the properties of an interior method for
the solution of (3.2). The logarithmic barrier function associated with (3.2) is given
by

Bw(s) = Q(s) − w ln c(s), (3.4)

where w is a positive weight (i.e., barrier parameter) such that w → 0. The function
Bw(s) is well-defined for all s such that c(s) > 0.

The modified barrier function is a generalization of the logarithmic barrier func-
tion (3.4) that allows prior knowledge of σ to be introduced into the formulation (see,
e.g., Polyak [23], Conn, Gould and Toint [2]). Consider the shifted problem

minimize
x∈Rn

Q(s) subject to c(s) + µ ≥ 0, (3.5)

where µ is a positive parameter. The modified barrier function is then the conventional
logarithmic barrier function associated with the shifted problem, i.e.,

Bw(s) = Q(s) − w ln
(

c(s) + µ
)

. (3.6)

For the weight, we choose w = µσe, where σe is a nonnegative estimate of the optimal
σ. Differentiating Bw(s) with respect to s yields

∇Bw(s) = g + Hs +
µσe

c + µ
s = g + (H + σ̂I)s,

where σ̂ = σ̂(s) = µσe/(c(s) + µ). Similarly, the Hessian of Bw(s) is given by

∇2Bw(s) = H + σ̂I + ωssT ,

where ω = σ̂/(c + µ) = µσe/(c + µ)2.
The next result shows that if Bw(s) is defined with σe equal to the optimal σ of

(3.3), then the optimal s may be computed using one unconstrained minimization of
Bw(s).

Theorem 3.1. Assume that s∗ and σ∗ satisfy the optimality conditions (3.3).
Then there exists a positive µ̄ such that for all µ < µ̄, the point s∗ is an unconstrained
minimizer of Bw(s) = Q(s) − w ln(c(s) + µ) with w = µσ∗.

In Fig. 1 we illustrate the problem of minimizing Q(s) = gTs+ 1

2
sTHs subject to

‖s‖2 ≤ δ, where

g =

(

2
4

)

, H =

(

1 0
0 −2

)

and δ = 4. (3.7)

The function Q(s) is unbounded below and the optimal s lies on the boundary of
the trust region. The unique global solution is given by s = (−0.49902, −3.96875)
and σ∗ = 3.00787, with minimum Q(s∗) = −32.49962 (all numbers are given to six
figures). There is another local minimum Q(ŝ) = −1.0082 at ŝ = (−1.0173, 3.8684)T

corresponding to the multiplier σ̂ = 0.9660 for which H+σ̂I is indefinite. The leftmost
plot in Fig. 1 gives the level curves of Q(s) and the position of the local solutions
ŝ and s∗. The center and rightmost plots give the modified barrier function for the
values σe = σ∗ and σe = 5. In both cases the shift was µ = 1 in order to emphasize
the shifted trust-region constraint.
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Fig. 1. The leftmost figure depicts the level curves of the subproblem (3.7). The
objective Q has a saddle point at (−2, 2) and decreases along directions parallel to
the s2 axis that start at (−2, 2). The interior of the circle depicts the set of points
satisfying the trust-region constraint ‖s‖2 ≤ 4. There are two local minimizers of
Q, but the direction s

∗ = (−0.49902, −3.96875) (to six figures) corresponding to
σ
∗ = 3.00787 is the global solution. The center and rightmost figures depict the level

curves of the modified barrier function with σe = σ
∗ and σe = 5, respectively.

In Fig. 2 we illustrate a degenerate subproblem with

g =

(

2
0

)

, H =

(

1 0
0 −2

)

and δ = 4. (3.8)

Both (− 2

3
, 3.94405)T and (− 2

3
, −3.94405)T give the same global minimum of Q. The

leftmost plot in Fig. 2 gives the level curves of Q(s) and the position of the two global
minimizers. The center and rightmost plots give the modified barrier function for the
values σe = σ∗ and σe = 5. As in example (3.7), the shift was µ = 1.

Fig. 2. The leftmost figure depicts the level curves of the degenerate subproblem
(3.8). The trust-region solution is not unique—both of the vectors shown is a con-
strained global minimizer of Q(s). The center and rightmost figures depict the level
curves of the modified barrier function with σe = σ

∗ and σe = 5, respectively.

Forsgren and Gill [8] describe a primal-dual barrier function that is minimized
simultaneously with respect to both the primal and dual variables. A benefit of this
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approach is that the quality of the dual variables may be monitored explicitly during
the solution of the subproblem. In the case of trust-region subproblem, this allows
more flexibility in compelling the iterates to converge to a solution with σ ∈ (−λn,∞).
The primal-dual formulation of the conventional barrier function (3.4) is given by

Mw,ν(s, σ) = Q(s) − w ln c(s) − ν
(

w ln
(

c(s)σ/w
)

+
(

w − c(s)σ
)

)

,

where ν is a positive scalar (usually chosen to be one). If we consider this function
for the shifted problem (3.5), we obtain

Q(s) − w ln
(

c(s) + µ
)

− ν
(

w ln
(

(c(s) + µ)σ/w
)

+
(

w − (c(s) + µ)σ
)

)

,

which has the same minimizers as the function

Q(s) − w ln
(

c(s) + µ
)

− ν
(

w ln
(

(c(s) + µ)σ
)

+
(

w − (c(s) + µ)σ
)

)

.

If we define w = µσe, then the primal-dual modified barrier function is given by

Mσe,ν(s, σ) = Q(s)−µσe ln
(

c(s)+µ
)

− νµσe ln
(

(c(s)+µ)σ
)

− ν
(

µ(σe −σ)− c(s)σ
)

,

which may be written more concisely as

Mσe,ν(s, σ) = Q(s) − µσe ln
(

(c(s) + µ)ν+1σν
)

− ν
(

µ(σe − σ) − c(s)σ
)

. (3.9)

Differentiating Mσe,ν(s, σ) with respect to both s and σ gives

∇Mw,ν(s, σ) =

(

g + (H + σI)s − (1 + ν)
(

σ − σ̂
)

s
νd(σ − σ̂)

)

,

where d = (c+µ)/σ and, as above, σ̂ = µσe/(c(s)+µ). Similarly, the Hessian is given
by

∇2Mw,ν(s, σ) =

(

HM −νs
−νsT νdσ̂/σ

)

,

where HM is the Hessian of Mw,ν with respect to s, i.e.,

HM = H +
(

σ + (1 + ν)(σ̂ − σ)
)

I + (1 + ν)
σ̂

σd
ssT .

The next result is a primal-dual version of Theorem 3.1. It shows that if σe is
equal to the optimal multiplier, then the optimal values of both s and σ may be
computed using one unconstrained minimization of Mw,ν .

Theorem 3.2. If s∗ and σ∗ satisfy the optimality conditions (3.3), then (s∗, σ∗)
is a stationary point of the function Mσe,ν(s, σ) with σe = σ∗. Moreover, if ν > 0,
then there exists a positive scalar µ̄ such that for all µ < µ̄, the point (s∗, σ∗) is an
unconstrained minimizer of Mσe,ν(s, σ) with σe = σ∗.

Proof. The result follows by evaluating ∇Mσe(s, σ) and ∇2Mσe(s, σ) with σe = σ∗

at the point (s∗, σ∗) and using the optimality conditions (3.3).
The practical significance of this result is that a good estimate σe of the optimal

multiplier σ∗ will define a primal-dual function that can be minimized for an improved
estimate of (s∗, σ∗).
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In the remaining discussion we restrict our attention to the case ν = 1. The idea is
to use the optimal multiplier σ from the subspace minimization problem (3.1) to define
the multiplier estimate σe for the next primal-dual function (3.9). The accelerator
direction is then an approximate Newton direction associated with minimizing the
function

Mσe(s, σ) = Q(s) − µσe ln
(

(c(s) + µ)2σ
)

−
(

µ(σe − σ) − c(s)σ
)

, (3.10)

which is defined for all (s, σ) such that c(s) > −µ and σ > 0.

3.2. Calculation of the accelerator direction. Given an approximate mini-
mizer (s, σ) of Mσe , the Newton equations for the next iterate (s + p, σ + q) are:

(

H
(

σ + 2(σ̂ − σ)
)

+ 2 σ̂
σdssT −s

−sT σ̂d/σ

)(

p
q

)

= −

(

g + H(σ)s − 2
(

σ − σ̂
)

s
d(σ − σ̂)

)

,

(3.11)
where H(σ) = H + σI. An approximate Newton method is defined by replacing σ̂ by
σ everywhere in the matrix ∇2Mσe(s, σ). This gives the equations

(

H(σ) + (2/d)ssT −s
−sT d

)(

p
q

)

= −

(

g + H(σ)s − 2(σ − σ̂)s
d(σ − σ̂)

)

. (3.12)

As the iterates converge, it must hold that σ̂ → σ and the solution of (3.12) approaches
the solution of (3.11).

Finally, we multiply the last equation and last variable by d−
1

2 and d
1

2 , respec-
tively, to improve the scaling when σ → 0. This gives

(

H(σ) + 2s̄s̄T −s̄
−s̄T 1

)(

p
q̄

)

= −

(

g + H(σ)s − 2d
1

2

(

σ − σ̂
)

s̄

d
1

2 (σ − σ̂)

)

, (3.13)

where s̄ = d−
1

2 s and q = d−
1

2 q̄. These equations are positive definite in a neighbor-
hood of a minimizer (s, σ) such that σ ∈ (−λn,∞), and they may be solved using
the CG method. If a direction of negative or zero curvature is detected, the direction
is used to update a lower bound on the best estimate of σ (see Section 3.5). It is
not necessary to minimize Mσe(s, σ) to high accuracy because the accuracy of the
accelerator step affects only the rate of convergence of the SSM method. In most
cases, only one Newton iteration need be performed (see Section 4).

The CG method may be used in conjunction with a preconditioner of the form

P =

(

M(σ) + 2s̄s̄T −s̄
−s̄T 1

)

,

where M(σ) is a positive-definite approximation to H(σ). The equations Pv = u used
to apply the preconditioner are solved by exploiting the equivalence of the systems:

(

M(σ) + 2s̄s̄T −s̄
−s̄T 1

)(

v1

v2

)

=

(

u1

u2

)

, (3.14a)

and

(

M(σ) s̄
s̄T −1

)(

v1

v2

)

=

(

u1 + 2u2s̄
−u2

)

(3.14b)

(see Forsgren, Gill and Griffin [9]). Equations (3.14b) are solved analytically if M(σ) is
diagonal. Alternatively, if M(σ) is defined using an incomplete Cholesky factorization
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of H(σ) we solve (3.14b) using the block factorization:
(

M(σ) s̄
s̄T −1

)

=

(

I
wT 1

)(

M(σ)
−
(

1 + wTs̄
)

)(

I w
1

)

,

where w satisfies M(σ)w = s̄. Thus, the preconditioned CG computations may be
arranged so that only solves with M(σ) are required.

3.3. Properties of the accelerator direction. The conventional primal-dual
interior-point approach to solving the trust-region subproblem is based on finding s
and σ that satisfy the perturbed optimality conditions

(H + σI)s = −g, σ > 0,
c(s)σ = µ, c(s) > 0

(3.15)

for a sequence of decreasing values of the positive parameter µ. Let F (s, σ) denote
the vector-valued function whose components are the residuals (H + σI)s + g and
c(s)σ − µ. Given an approximate zero (s, σ) of F such that c(s) > 0 and σ > 0, the
Newton equations for the next iterate (s + p, σ + q) are:

(

H + σI s
−σsT c(s)

)(

p
q

)

= −

(

g + (H + σI)s
c(s)σ − µ

)

.

The assumption that σ > 0 implies that it is safe to divide the last equation by −σ
to give the symmetrized equations:

(

H + σI s
sT −d

)(

p
q

)

= −

(

g + (H + σI)s
d(σ̂ − σ)

)

,

where d = c(s)/σ and σ̂ = µ/c(s). The presence of the nonzero (2, 2) block implies
that the conventional interior-point approach defines a regularization of Newton’s
method for a solution of the optimality conditions (3.3). The regularized solution lies
on the central path of solutions

(

s(µ), σ(µ)
)

of (3.15) (see, e.g., [10]). This implies

that the regularized solution
(

s(µ), σ(µ)
)

will be different from (s∗, σ∗) for a given
nonzero µ. Moreover, the influence of the regularization on the Newton equations
diminishes as µ → 0.

These considerations suggest that we seek an alternative “exact” regularization
that allows the use of a fixed value of µ, but does not perturb the regularized solution.
Consider the perturbed optimality conditions

(H + σI)s = −g, σ > 0,
c(s)σ = µ(σe − σ), c(s) > −µ,

(3.16)

where σe is a nonnegative estimate of σ∗. If σe = σ∗, these conditions are satisfied
by (s∗, σ∗) for any positive µ. The symmetrized Newton equations associated with
conditions (3.16) are

(

H + σI s
sT −d

)(

p
q

)

= −

(

g + (H + σI)s
d(σ̂ − σ)

)

,

where now, d = (c(s) + µ)/σ and σ̂ = µσe/(c(s) + µ). Forsgren, Gill and Griffin [9]
show that these equations are equivalent to the so-called doubly-augmented system:

(

H + σI + 2

dssT −s

−sT d

)(

p

q

)

= −

(

g + (H + σI)s − 2(σ − σ̂)s

d(σ − σ̂)

)

.
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which is identical to the approximate Newton system (3.12). It follows that the
equations for the accelerator direction also define a regularized form of Newton’s
method applied to the optimality conditions.

The next result defines the precise effect of the regularization parameter µ in the
degenerate case.

Theorem 3.3 (Regularization of the degenerate case). Let (s, σ) be a solution of
the trust-region subproblem such that: (i) ‖s‖ = δ; (ii) H +σI is positive semidefinite
and singular; (ii) g ∈ null(H + σI)⊥; and (iii) ‖(H + σI)†g‖ < δ. If the leftmost
eigenvalue of H has algebraic multiplicity 1, then the augmented system matrix

(

H + σI + (2/d)ssT −s

−sT d

)

(3.17)

is positive definite.
Proof. Assumptions (i)–(iii) imply that (s, σ) is a constrained degenerate solution.

In particular, it holds that σ = −λn, where λn is the leftmost eigenvalue of H . A
solution s of the trust-region subproblem is given by

s = −(H − λnI)†g + βz, (3.18)

where z is a unit vector such that z ∈ null(H − λnI) and β is a nonzero scalar such
that ‖s‖ = δ. Consider the following decomposition of (3.17):

(

H + σI + 2

dssT −s

−sT d

)

=

(

I − 1

ds

0 1

)(

H − λnI + 1

dssT 0

0 d

)(

I 0

− 1

dsT 1

)

.

Assume that H + σI + (2/d)ssT is not positive definite. Then there exists a nonzero
p such that pT(H − λnI + (2/d)ssT )p ≤ 0. As H − λnI is positive semidefinite, it
must hold that p ∈ null(H − λnI) and sTp = 0. Moreover, since (H − λnI)†g ∈
range(H − λnI), it must hold that sTp = βzTp = 0, which implies that zTp = 0. But
this is only possible if dim(null(H − λnI)) > 1. Thus H + σI + (2/d)ssT must be
positive definite and the result follows.

3.4. Calculation of the approximate leftmost eigenpair. The approximate
Newton equations (3.13) are solved using the Lanczos-CG variant of the precondi-
tioned conjugate-gradient method. During the evaluation of the Lanczos process, the
Lanczos vectors are used to generate the subspace associated with an SSM method
for an estimate of the leftmost eigenpair of H . The estimate is computed by solving
the reduced generalized eigenproblem

minimize
z∈Rn

zTHz subject to ‖z‖2 = 1, z ∈ Zk = span{zk−1, v̄k, v̄k−1}, (3.19)

where zk−1 is the leftmost eigenvector estimate from the previous CG iteration, and
v̄k and v̄k−1 are the first n−1 components of the two most recently computed Lanczos
vectors. Given the matrix Zk whose columns form a maximally linearly independent
subset of {zk−1, v̄k, v̄k−1}, the solution zk of (3.19) is defined as zk = Zkwk, where
wk solves the reduced problem

minimize
y

yTZT
kHZky subject to ‖Zky‖2 = 1.

This problem has at most three dimensions, and is solved in closed form. Once zk

has been determined, the leftmost eigenvalue is estimated by the Rayleigh quotient
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ζk = zT
kHzk. The inclusion of zk−1 as a generator of Zk ensures that the Rayleigh

quotients decrease monotonically.
The calculation of ZT

kHZk requires the vectors Hzk−1, Hv̄k and Hv̄k−1. The
vector Hzk−1 is the solution of the previous reduced eigenproblem. The vectors Hv̄k

and Hv̄k−1 are available as part of the two-term Lanczos recurrence. For the next
step, the vector Hzk is defined in terms of the identity Hzk = HZkwk, which involves
a simple linear combination of Hzk−1, Hv̄k and Hv̄k−1. It follows that once Hz0 is
calculated, no additional matrix-vector products are needed. The calculation of the
eigenpair is summarized in Algorithm ssmEig below.

For the first outer iteration (i.e., j = 0) a random vector is used for z0, the initial
estimate of the leftmost eigenvector of H0. In subsequent iterations, z0 is defined as
the eigenvector estimate from the previous trust-region subproblem. As the sequence
{Hj} converges, z0 should be a good estimate of the leftmost eigenvector for each
subproblem.

Algorithm ssmEig .
(

z, ζ, [Hz], σℓ

)

= ssmEig(z, v̄k, v̄k−1, [Hz], [Hv̄k], [Hv̄k−1], σℓ);

Define Z from a maximally linearly independent subset of v̄k, v̄k−1, and z;
Form ZTHZ and ZTZ from z, v̄k, v̄k−1, [Hv̄k], [Hv̄k−1] and [Hz];
w := argminy

{

yTZTHZy : ‖Zy‖2 = 1
}

;

z :=Zw; ζ = zTHz;
[Hz] :=[HZ]w;
σℓ = max{|ζ|, σℓ};

3.5. Approximate safeguarding. The algorithm maintains two approximate
solutions: (se, σe) and (sa, σa). The pair (se, σe) is the solution of the subspace min-
imization problem (3.1). The accelerator pair (sa, σa) is the most recently computed
estimate of a minimizer of Mσe(s, σ).

At each iteration, a safeguarding algorithm ensures that both σa and σe are
strictly positive and not less than σℓ, a current greatest lower bound on −λn. The
algorithm also attempts to adjust σa so that matrix H + σaI of (3.13) is positive
definite. In order to maintain the monotonicity of Q, the value of se is always the
solution of the subspace minimization problem. However, σe may be overwritten by
σa if σe < σℓ < σa. In addition, (sa, σa) is replaced by (se, σe) if σa < σℓ < σe. In the
event that both σa and σe are less than σℓ, the leftmost eigenpair is used to update
σa and σe.

Finally, in order that the matrix of (3.13) is positive definite, the IP-SSM method
also ensures c(sa) + µ > 0. If c(sa) ≤ −µ, the accelerator direction is replaced by
se, with a suitable rescaling (if necessary) to guarantee that sa lies exactly on the
boundary.

If σ ∈ (−λn,∞) and d > 0, the Newton system (3.13) is positive definite and
can be solved using CG. The following result shows that if CG computes a conjugate
direction p of negative curvature, then the approximate Newton equations (3.12) are
indefinite, and p is used to update the estimate of the leftmost eigenvector.

Theorem 3.4. If p is a direction of negative curvature for the matrix

B =

(

H + σI + (2/d)ssT −s
−sT d

)

,
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Algorithm safeguard .
(

sa, σa, σe, [Hsa]
)

= safeguard
(

sa, σa, se, σe, ζ, z, σℓ, [Hsa], [Hse], [Hz]
)

;

Choose σmin > 0;
if σa < σℓ and σℓ < σe then

σa :=max{σe, σmin}; sa := s; [Hsa] :=[Hs]
else if σe < σℓ and σℓ < σa then

σe :=σa;
else if σa < σℓ and σe < σℓ then

σe :=−ζ; σa :=−ζ; sa := δ × z; [Hsa] :=[Hz];
end

with d a positive scalar, then the vector of first n elements of p is a direction of
negative curvature for H + σI.

Proof. As p is a direction of negative curvature for B, we have

pTBp = pT

(

H + σI + (2/d)ssT −s
−sT d

)

p < 0.

Let p̂ and ρ denote the first n elements and the last element of p respectively. A
simple calculation yields

pTBp = p̂T(H + σI)p̂ +
2

d
(sTp̂)2 − 2ρsTp̂ + ρ2d

= p̂T(H + σI)p̂ +
1

d
(sTp̂)2 +

1

d

(

(sTp̂)2 − 2(sTp̂)(ρd) + (ρd)2
)

= p̂T (H + σI)p̂ +
1

d

(

(sTp̂)2 + (sTp̂ − ρd)2
)

< 0.

It follows that p̂T(H + σI)p̂ < −
(

(sTp̂)2 + (sTp̂ − ρd)2
)

/d < 0, as required.

4. Numerical Results. The Steihaug-Toint and IP-SSM methods were imple-
mented and run in Matlab. Numerical results are given for unconstrained prob-
lems from the CUTEr test collection (see Bongartz et al. [1] and Gould, Orban and
Toint [16]). The test set was constructed using the CUTEr interactive select tool,
which allows the identification of groups of problems with certain characteristics. In
our case, the select tool was used to identify the twice-continuously differentiable
unconstrained problems for which the number of variables can be varied.

For all problems, the dimension n was chosen so that n ≥ 1000, where n =
1000 was the default unless otherwise recommended in the CUTEr documentation.
A combination line-search trust-region method was used to define the update to the
trust-region radius. For all problems, the initial trust-region radius was chosen to be
one.

The trust-region method is considered to have solved a CUTEr problem success-
fully when a trust-region iterate xj satisfies

‖g(xj)‖2 ≤ max{ǫ‖g(x0)‖2, ǫ|f(x0)|, 10−5}, (4.1)

where ǫ = 10−6. If x0 is a non-optimal stationary point, the presence of the term
f(x0) prevents the trust-region algorithm from terminating at x0. If a solution is
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not found within 2n iterations, the iterations are terminated and the algorithm is
considered to have failed. Throughout this section we refer to sj as the approximate
solution of the jth trust-region problem.

4.1. Solving the reduced subproblem. At the core of the algorithm is a
reduced trust-region subproblem (3.1) with at most three dimensions. Given the ma-
trix Pk whose columns form a maximally linearly independent subset of {sk−1, zk, sa

k},
the solution sk of (3.1) may be written as sk = Pkwk, where wk solves the reduced
problem

minimize
y

Q(Pky) ≡ gTPky + 1

2
yTPT

k HPky, subject to ‖Pky‖2 ≤ δ. (4.2)

A maximally linearly independent subset of the vectors {sk−1, zk, sa
k} is found using a

QR decomposition with column interchanges. As in algorithm ssmEig , the matrices
PT

k HPk and PT
k Pk can be formed with no additional matrix-vector products. The

vector Hsk is defined in terms of the identity Hsk = HPkwk, which involves a simple
linear combination of Hsk−1, Hzk, and Hsa

k. The matrices PT
k HPk and PT

k Pk are
symmetrized in each case.

The reduced problem is solved using a modified version of the Moré-Sorensen
algorithm [20] that computes an exact left-most eigenpair of the 3×3 shifted Hessian.
At each iteration, the Cholesky factorization of PT

k HPk + σPT
k Pk is used to compute

a vector wR such that

(PT
k HPk + σPT

k Pk)wR = −PT
k g.

The accuracy of an approximate solution of (4.2) is determined by preassigned toler-
ances γ1, γ2 ∈ (0, 1). On termination, the approximate solution of (3.1) is s = sR +sN ,
where sR = PkwR and sN = PkwN , with wN defined as the zero vector if (1 − γ1)δ ≤
‖sR‖ ≤ (1 + γ1)δ, or a leftmost eigenvector of PT

k HPk + σPT
k Pk if ‖sR‖ < (1 − γ1)δ.

The resulting value of s satisfies

Q(s) −Q∗ ≤ γ1(2 − γ1)max(|Q∗|, γ2), and ‖s‖ ≤ (1 + γ1)δ, (4.3)

where Q∗ denotes the global minimum of (4.2) (see Moré and Sorensen [20]).
The reduced trust-region subproblem must be solved to an accuracy that is at

least as good as that required for the full problem. Suitable values for the constants γ1

and γ2 of (4.3) are γ1 = min{10−1τ, 10−6} and γ2 = 0, where τ denotes the accuracy
required in the full space.

The calculations associated with the solution of the reduced problem are given
in algorithm ssmSolve , with se = sk−1, z = zk, and sa = sa

k. The inclusion of the
best approximation sk−1 in span{sk−1, zk, sa

k} guarantees that Q decreases at each
step. Care must be taken to separate the nullspace components of the Moré-Sorensen
solution to test the optimality conditions correctly, i.e., both se and sR are stored.
The Moré-Sorensen algorithm also returns the optimal σ for the reduced problem,
which is denoted by σe in ssmSolve .

The accelerator direction sa
k is defined as an approximate solution of the Newton

equations (3.13). The relevant calculations are described in algorithm ipAccelerator

below.

4.2. Solving the trust-region subproblem. At the start of each subspace
minimization, the regularization parameter µ is initialized at 10−1. At the end of the
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Algorithm ssmSolve.
(

se, sR, σe, [Hse], [HsR]
)

= ssmSolve
(

se, sa, z, [Hse], [Hz], [Hsa]]
)

;

Define P from a maximally linearly independent subset of se, z and sa;
Form PTHP , PTP and PTg from se, z, sa, [Hs], [Hz], and [Hsa];
y := argmin

{

gTPy + 1

2
yTPTHPy : ‖Py‖2 ≤ δ

}

;

se :=Py; [Hse] :=[HP ]y;

Algorithm ipAccelerator .
(

sa, [Hsa], σa, σℓ

)

= ipAccelerator
(

sa, [Hsa], σa, σℓ

)

;

σ̂ :=µσe/
(

c(sa) + µ
)

;

Find an approximate solution (p, q) of (3.13) with (s, σ) = (sa, σa);
Update σℓ if a direction of negative curvature was found by Lanczos-CG;
ασ := if q < 0 then (σa + q − σℓ)/q else +∞;
αs := the positive root of c(αsa) + µ = 0;
αM := min{1, (1 − µ)ασ , (1 − µ)αs};
Compute α (0 < α ≤ αM) satisfying the Wolfe line search conditions for Mσe ;
sa := sa + αp; σa := σa + αq; [Hsa] :=[Hsa] + α[Hp];

kth step a new µ is computed such that

µ =

{

min{10−1, 1

2
µ̄} if ζ < 0;

10−1/(1 + k) otherwise,
(4.4)

where ζ is the best estimate of the left-most eigenvalue and µ̄ = −2‖sa‖
2/ζ. Includ-

ing the iteration index allows for µ to be gradually decreased in order to obtain an
improved accelerator direction.

More details of proposed method are presented in Algorithm IP-SSM below. An
important feature of the method is that σe and the approximate leftmost eigenpair
from one outer iteration are used to initialize the next. At the start of each subprob-
lem, the initial value of the interior-point accelerator variable σa is set to σe, as long
as σe is larger than σmin, a preassigned constant that specifies the smallest allow-
able value of σa. (In the final iterations of the trust-region method the trust-region
constraint will be inactive and σe = 0.)

Algorithm IP-SSM .
(

se, [Hse], σe, z
)

= IP-SSM
(

g, δ, σe, z
)

;

Specify τ > 0; σmin > 0; µ := 10−1;
σℓ := 0; σa :=max{σe, σmin};
se :=−g; [Hse] := Hse; sa := 0; [Hsa] := 0;
re := ‖g + (H + σeI)se‖M−1 + σe|c(se)|;
while k < kmax and re > τ do

(

sa, [Hsa], σa, σℓ

)

:= ipAccelerator
(

sa, [Hsa], σa, σℓ

)

;
(

s̃, sR, σ̃, [Hs̃], [HsR]
)

:= ssmSolve
(

se, sa, z, [Hse], [Hz], [Hsa]
)

;
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r̃ := ‖g + (H + σ̃I)sR‖M−1 + σ̃|c(s̃)|;
if r̃ ≤ re and σ̃ > σℓ then se := s̃; σe := σ̃; [Hse] :=[Hs̃]; re := r̃;
(

sa, σa, σe, [Hsa]
)

:= safeguard (sa, σa, se, σe, ζ, z, σℓ, [Hsa], [Hse], [Hz], δ);

if ra < re/10 then σe :=σa;
Update µ using (4.4); Compute c(sa);
if c(sa) + µ ≤ 0 then

sa := se; σa := σe; [Hsa] :=[Hse];
Update µ using (4.4); Compute c(sa);
if c(sa) + µ ≤ 0 then sa := δ × sa/‖sa‖2; [Hsa] :=[Hsa]/‖sa‖2;

end
if ra < τ and re > τ then

if Q(sa) ≤ Q(se) then
se := sa; σe :=σa; break;

end
end
σa :=max{σa, σmin}; k := k + 1;

end

Algorithm IP-SSM is terminated with final iterate (s, σ) given by either (se, σe)
or (sa, σa), depending on the values of the residuals re and ra such that

re = ‖g + (H + σeI)sR‖M−1 + σe|c(se)|, and (4.5a)

ra = ‖g + (H + σaI)sa‖M−1 + σa|c(sa)|. (4.5b)

The idea is to choose the iterate with the least residual, subject to the requirement
that s improves on the Cauchy step. Given a positive tolerance τ , the final iterate
is (s, σ) = (se, σe) if re ≤ τ , or (s, σ) = (sa, σa) if ra ≤ τ < re and Q(sa) ≤ Q(se).
The initial value se = −g guarantees that every subspace minimizer improves on the
Cauchy step. The condition Q(sa) ≤ Q(se) ensures that this improvement is inherited
by the final point.

4.3. Termination of the trust-region subproblem. The principal termi-
nation condition for the trust-region subproblem is based on the Dembo-Eisenstat-
Steihaug criterion [4]. As above, let sj denote the approximate solution of the jth
trust-region subproblem. In our implementation of the Steihaug-Toint method, the
Lanczos-CG method terminates successfully with a point sj inside the trust region if

‖gj + Hjsj‖M−1

j
≤ τ1‖gj‖M−1

j
, where τ1 = min

{

10−1, ‖gj‖
0.1
M−1

j

}

. (4.6)

This condition forces a relative decrease in the residual comparable to that required
by Gould et al. [15]. The IP-SSM method terminates successfully with direction sj if

min{re, ra} < τ1‖gj‖M−1

j
(4.7)

(see (4.5) for the definitions of re and ra). A limit of 20 Lanczos vectors is imposed on
all calculations involving the Lanczos-CG process. If this limit is reached during the
accelerator calculation, the Lanczos-CG iterate with the smallest residual is returned.
In addition, the number of subspace minimization steps in IP-SSM is limited to 10.
These limits are designed to avoid excessive computation when far from the solution.
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4.4. The trust-region algorithm. The approximate solution sj of the jth
trust-region subproblem is used to update the trust-region iterate as xj+1 = xj +
αjsj , where αj is obtained using the biased Wolfe line search proposed by Gertz [12].
In the combination line-search trust-region algorithm given below, Q−

j (s) = gT
j s +

1

2

[

sTHjs
]

−
, where [ c ]− denotes the negative part of c, i.e., [ c ]− = min{ 0, c }. With

this choice of quadratic model, the sufficient decrease condition on αj is

f
(

xj + sj(αj)
)

− f(xj)

Q−
j

(

sj(αj)
) > η1, (4.8)

where η1 is a preassigned scalar such that 0 < η1 < 1

2
. The line-search parameters

used for the experiments were η1 = 10−4, η2 = 1

4
, ω = 9

10
, and γ3 = 3

2
.

Combination Line-Search/Trust-Region Algorithm.
Specify constants 0 < η1 < η2 < 1; 0 < η1 < 1

2
; 0 < η1 < ω < 1; 1 < γ3;

Choose x0; δ0 := 1; j := 0;
while not converged do

Find an approximate solution sj for min
{

Qj(s) : ‖s‖2 ≤ δj

}

;

Find αj satisfying the Wolfe conditions:

f(xj + αjsj) ≤ f(xj) + η1Q
−
j (αjsj) and |g(xj + αjsj)

Tsj | ≤ −ωQ−′
j (αjsj);

xj+1 :=xj + αjsj ;

if
(

f(xj+1 − f(xj)
)

/Q−
j (sj) ≥ η2 then

if ‖sj‖2 = δj and αj = 1 then

δj+1 := γ3δj ;

else if ‖sj‖2 < δj and αj = 1 then

δj+1 := max{δj , γ3‖sj‖2};

else
δj+1 := αj‖sj‖2;

end if
else

δj+1 := min{αj‖sj‖2, αjδj};

end if
j := j + 1;

end do

A key feature of the combination line-search trust-region method is that the trust-
region radius is updated as a function of αj . The term “biased” is used by Gertz to
refer to a deliberate bias against reducing the trust-region radius when αj is small. The
line search used here is a modification of Gertz’s line that may reduce the trust-region
radius even when αj is small. Nevertheless, our line-search retains a natural bias
against decreasing the trust-region radius; in particular, the trust-region radius is not
decreased if ‖sj‖2 < δj and αj = 1. Numerical results reported in [6] for the CUTEr
unconstrained problems show that this combination trust-region/line-search method
is generally more efficient than a trust-region method based on the conventional rules
for updating δj .

Tables 1–2 give the results of applying the Steihaug-Toint and IP-SSM methods
to 52 problems from the CUTEr test set. The limit on the number of Lanczos vectors
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computed in the Steihaug-Toint method was 100. Problems that require more than
100 Lanczos iterations for a subproblem were considered to be unsuitable for testing
with an unpreconditioned method. For each method, column “Fe” gives the total
number of function evaluations and column “prods” gives the total number of matrix-
vector products. The final value of f and the final relative decrease in ‖g‖2 (i.e.,
‖g(xk)‖2/‖g(x0)‖2) are also provided. The final function values are given to help
identify local solutions and to identify cases where the converged gradient does not
correspond to a stationary point. (For problems with a large value of ‖g0‖2, it is
unreasonable to require ‖gj‖2 to satisfy a small absolute tolerance.)

Tables 1–2 indicate that on many problems the number of function evaluations
required for the Steihaug-Toint and IP-SSM methods are comparable. This is clearly
indicated in the associated bar graphs of Figs. 3–4. In these cases, the approximate
solution of every subproblem lies inside the trust region and both methods are able
to solve the subproblem to high accuracy.

We would expect the Steihaug-Toint method to require more function evaluations
when solutions of the trust-region subproblem frequently occur on the boundary. In
these cases, the difference in function evaluations is sometimes significant (see, e.g.,
broydn7, genrose, fminsurf, and fminsrf2 ). In a few cases, IP-SSM performed slightly
worse than the Steihaug-Toint method. In one case (ncb20 ), IP-SSM was significantly
worse. The superiority of the Steihaug-Toint method in these cases appears to be good
fortune rather than the result of a consistently better solution of the subproblem.

The results of Tables 1–2 are summarized in Table 3. In general, IP-SSM required
23% fewer function evaluations than Steihaug-Toint. By comparison, Gould et al. [15]
report that GLTR solved 16 out of a set of 17 CUTEr problems and, for those solved
by both GLTR and Steihaug-Toint, GLTR required 12.5% fewer function evaluations.

Function Evaluations (unpreconditioned)
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Fig. 3. Steihaug-Toint and IP-SSM with no preconditioning. CUTEr prob-
lems A–E.

The Steihaug-Toint and IP-SSM methods were compared for a diagonal precon-
ditioner and an incomplete Cholesky preconditioner. The nonzero elements of the
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Table 1
Steihaug-Toint and IP-SSM with no preconditioning. CUTEr problems A–E

Steihaug IP-SSM

Problem fe prods f(x) rel(‖g‖2) fe prods f(x) rel(‖g‖2)

arwhead 6 6 1.69e-10 7.97e-09 6 22 4.39e-11 4.39e-09

bdqrtic 14 41 3.98e+03 2.65e-07 13 66 3.98e+03 5.39e-07

broydn7d 138 407 3.75e+02 3.77e-07 47 808 3.38e+02 3.34e-06

brybnd 12 46 6.65e-07 1.66e-06 12 81 9.93e-07 2.33e-06

chainwoo 27 57 1.31e+01 9.76e-06 15 83 3.93e+03 1.54e-05

cosine 12 10 -9.99e+02 1.33e-05 12 36 -9.99e+02 7.16e-06

cragglvy 14 36 3.36e+02 2.84e-06 14 75 3.36e+02 1.50e-06

dixmaana 13 11 1.00e+00 1.75e-06 12 36 1.00e+00 1.64e-05

dixmaanb 13 11 1.00e+00 7.81e-07 13 39 1.00e+00 6.27e-09

dixmaanc 13 11 1.00e+00 6.58e-06 13 38 1.00e+00 6.68e-06

dixmaand 14 12 1.00e+00 4.91e-06 14 42 1.00e+00 4.90e-06

dixmaane 15 82 1.00e+00 8.65e-06 14 127 1.00e+00 3.80e-06

dixmaanf 15 30 1.00e+00 7.48e-06 15 60 1.00e+00 7.57e-06

dixmaang 15 24 1.01e+00 9.44e-06 15 55 1.01e+00 9.73e-06

dixmaanh 15 19 1.03e+00 1.36e-05 15 51 1.03e+00 1.37e-05

dixmaanj 16 40 1.00e+00 4.39e-06 16 74 1.00e+00 4.36e-06

dixmaank 16 30 1.00e+00 5.53e-06 16 63 1.00e+00 5.57e-06

dixmaanl 16 25 1.01e+00 6.19e-06 16 60 1.02e+00 6.95e-06

dqdrtic 14 11 1.90e-03 3.17e-05 13 28 5.20e-04 1.53e-05

dqrtic 27 20 1.63e+11 4.17e-03 28 61 3.29e+10 1.27e-03

edensch 15 25 2.19e+02 3.33e-06 15 59 2.19e+02 4.17e-06

eg2 4 3 -9.99e+02 1.10e-11 15 223 -9.99e+02 7.45e-07

engval1 14 17 1.11e+03 6.72e-06 14 45 1.11e+03 4.54e-06

extrosnb 31 70 2.24e-02 6.48e-06 31 132 2.35e-02 6.86e-06

Steihaug-Toint preconditioner M were:

Mll = max{|Hll|, 10−3}.

The elements of the IP-SSM preconditioner were based on the diagonals of H + σaI,
i.e.,

Mll = max{|Hll + σa|, 10−3}.

For consistency, the stopping criteria and error terms (ra and re) for both methods
were defined in terms of the M−1 norm. Although this choice of norm is more nat-
ural for the Steihaug-Toint method, results were similar using the two-norm. That
is, when preconditioning was successful, Lanczos-CG converged rapidly—usually sat-
isfying the stopping criteria in both norms. Problems that require more than 100
Lanczos vectors for a subproblem were considered to be unsuitable for testing with a
diagonal preconditioner and were removed from the test set.

Tables 4–5 give the results obtained using diagonal preconditioning. An asterisk
indicates that a solver failed to converge after 2n function evaluations. The function
evaluations are also compared in Figures 5–6, with an overall summary given in the
first half of Table 8. The results of Table 8 include only those problems on which
both the Steihaug-Toint and IP-SSM methods converged. For both methods, diagonal
preconditioning improved the convergence rate of the Lanczos-CG algorithm on many
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Table 2
Steihaug-Toint and IP-SSM with no preconditioning. CUTEr problems F–Z.

Steihaug IP-SSM

Problem fe prods f(x) rel(‖g‖2) fe prods f(x) rel(‖g‖2)

fletchcr 1986 16396 1.65e-10 7.75e-06 1747 21133 1.62e-07 1.36e-05

fminsrf2 * * * * 132 11076 1.00e+00 4.11e-05

fminsurf 352 989 1.00e+00 3.32e-05 65 1282 1.00e+00 1.11e-05

freuroth 16 19 1.21e+05 2.19e-06 16 48 1.21e+05 2.26e-06

genrose 1180 5736 1.00e+00 1.24e-06 844 17566 1.00e+00 5.63e-07

liarwhd 19 27 4.03e-07 1.30e-08 17 62 2.96e-04 5.21e-06

ncb20 111 1414 9.10e+02 1.50e-05 75 2351 9.18e+02 1.06e-05

ncb20b 10 61 1.68e+03 8.28e-06 9 105 1.68e+03 7.86e-06

noncvxu2 36 26 1.15e+06 7.40e-03 44 270 9.75e+05 7.90e-03

noncvxun 37 28 6.80e+05 7.40e-03 42 328 6.97e+05 7.75e-03

nondia 4 3 6.27e-03 2.46e-07 4 11 6.24e-03 5.67e-07

nondquar 23 115 5.51e-04 9.53e-07 20 189 7.07e-04 9.24e-07

penalty1 28 17 3.01e+13 2.11e-03 28 53 3.01e+13 2.11e-03

powellsg 16 40 4.63e-03 4.88e-06 15 101 7.01e-03 6.86e-06

power 15 33 3.56e+04 3.41e-06 15 61 3.51e+04 3.39e-06

quartc 27 20 1.63e+11 4.17e-03 28 61 3.29e+10 1.27e-03

schmvett 9 37 -2.99e+03 2.04e-05 8 62 -2.99e+03 8.85e-06

sinquad 19 27 -2.94e+05 3.55e-07 18 84 -2.94e+05 7.57e-08

sparsqur 14 23 4.24e-03 1.83e-06 14 66 4.19e-03 1.91e-06

spmsrtls 18 117 5.61e-08 1.15e-05 20 299 4.05e-08 1.16e-05

srosenbr 9 10 1.61e-09 6.99e-09 9 42 4.48e-09 1.46e-08

testquad 72 1259 2.57e+02 1.24e-05 12 130 6.66e+02 8.17e-06

tointgss 15 13 1.00e+01 2.47e-05 20 85 1.00e+01 1.91e-05

tquartic 18 23 3.44e-17 2.06e-10 15 53 2.66e-15 3.04e-06

tridia 50 842 2.25e-03 1.33e-05 18 1388 2.84e-03 5.48e-06

vardim 13 12 6.87e+08 1.75e-06 13 40 6.87e+08 1.75e-06

vareigvl 14 26 3.54e-04 7.23e-06 14 56 3.55e-04 7.46e-06

woods 12 14 1.97e+03 9.62e-06 13 39 1.97e+03 2.92e-06

Table 3
Comparison of unpreconditioned methods

Steihaug IP-SSM

Problems solved 52 53

Function evals (fe) 4612 3537

Matrix mults (prods) 28371 48329

Improvement in fe — 23%

problems—as seen in the decrease in the number of matrix-vector products. However,
in the case of Steihaug’s method, even with faster convergence of Lanczos-CG, more
function evaluations are required by the overall solver (see, e.g., broydn7, genrose,
ncb20, noncvxu2, and noncvxun).

The two methods were also tested using an incomplete Cholesky preconditioner.
For these tests, computed incomplete Cholesky factorizations using (icfs), a fac-
torization proposed by Lin and Moré [19]. In these runs, the preconditioner for the
Steihaug-Toint method was the incomplete Cholesky factorization of Hj . The precon-
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Funct ion Evaluat ions ( unprecondit ioned)

0

100

200

300

400

500

600

700

800

900
fl

e
tc

h
c
r

fm
in

s
u

rf
fr

e
u

ro
th

g
e

n
ro

s
e

li
a

rw
h

d
n

c
b

2
0

n
c
b

2
0

b
n

o
n

c
v

x
u

2
n

o
n

c
v

x
u

n
n

o
n

d
ia

n
o

n
d

q
u

a
r

p
e

n
a

lt
y

1
p

o
w

e
ll

s
g

p
o

w
e

r
q

u
a

rt
c

s
c
h

m
v

e
t t

s
in

q
u

a
d

s
p

a
rs

q
u

r
s
p

m
s
rt

ls
s
ro

s
e

n
b

r
te

s
tq

u
a

d
to

in
tg

s
s

tq
u

a
rt

ic
t r

id
ia

v
a

rd
im

v
a

re
ig

v
l

w
o

o
d

s

Problem

F
u

n
c

ti
o

n
 E

v
a

ls
.

Steihaug

IP-SSM

1180

1747

1986

Fig. 4. Steihaug-Toint and IP-SSM with no preconditioning. CUTEr prob-
lems F–Z.
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Fig. 5. Steihaug-Toint and IP-SSM with diagonal preconditioning. CUTEr
problems A–E.

ditioner for IP-SSM was the incomplete Cholesky factorization of the positive-definite
matrix Hj +σaI. Problems requiring more than 100 Lanczos vectors for a subproblem
were considered to be unsuitable for testing with this type of preconditioner and were
removed from the test set. The M−1 norm was used to test convergence for both
Steihaug’s method and the IP-SSM method. Also, problems with a dense Hessian
were removed from the test set.

Tables 6–7 contains the results from these tests; these results are also displayed in
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Table 4
Steihaug-Toint and IP-SSM with diagonal preconditioning. CUTEr problems A–E

.
Steihaug IP-SSM

Problem fe prods f(x) rel(‖g‖2) fe prods f(x) rel(‖g‖2)

arwhead 15 11 0.00e+00 1.03e-11 6 21 6.81e-09 3.44e-07

bdqrtic 22 19 3.98e+03 1.24e-07 13 53 3.98e+03 6.59e-08

broydn7d 221 341 3.67e+02 3.50e-06 48 700 3.22e+02 1.81e-06

brybnd 20 19 4.92e-06 4.03e-06 12 45 1.36e-07 2.16e-06

chainwoo 27 33 3.93e+03 3.91e-06 14 59 3.93e+03 8.33e-06

cosine 23 20 -9.99e+02 5.36e-06 12 28 -9.99e+02 1.01e-05

cragglvy 29 40 3.36e+02 2.16e-06 14 60 3.36e+02 1.48e-06

dixmaana 17 13 1.00e+00 1.08e-06 12 38 1.00e+00 1.40e-05

dixmaanb 17 12 1.00e+00 3.83e-06 13 40 1.00e+00 8.34e-07

dixmaanc 19 14 1.00e+00 2.80e-06 13 40 1.00e+00 8.10e-06

dixmaand 21 16 1.00e+00 1.36e-07 14 44 1.00e+00 1.45e-06

dixmaane 24 26 1.00e+00 1.63e-06 15 52 1.00e+00 8.32e-08

dixmaanf 20 22 1.00e+00 4.80e-06 16 59 1.00e+00 5.41e-06

dixmaang 20 20 1.01e+00 1.17e-05 16 60 1.00e+00 5.70e-06

dixmaanh 21 19 1.03e+00 1.39e-05 16 59 1.01e+00 6.09e-06

dixmaani 24 29 1.00e+00 2.40e-06 14 69 1.00e+00 3.02e-06

dixmaanj 20 22 1.00e+00 8.86e-06 16 60 1.00e+00 8.44e-06

dixmaank 21 22 1.01e+00 6.21e-06 16 60 1.01e+00 8.65e-06

dixmaanl 22 21 1.02e+00 7.16e-06 16 59 1.02e+00 9.15e-06

dqdrtic 21 12 2.23e-26 1.11e-16 13 26 1.75e-14 7.04e-11

dqrtic 50 28 6.28e+10 2.37e-03 28 64 3.17e+10 1.28e-03

edensch 24 21 2.19e+02 7.09e-06 17 61 2.19e+02 5.20e-07

eg2 8 6 -9.99e+02 2.90e-09 19 151 -9.99e+02 1.38e-06

engval1 19 15 1.11e+03 5.71e-06 13 37 1.11e+03 1.35e-05

extrosnb 39 48 4.94e-02 5.28e-06 26 92 6.72e-02 5.52e-06

Figures 5–6, and they summarized in the second half of Table 8. As before, an asterisk
in Tables 6–7 denotes when a solver failed to converge after 2n function evaluations.
And, the asterisk in Table 8 denotes that the computation only included problems
on which both the Steihaug-Toint and IP-SSM methods converged. The reduction in
the overall number of matrix-vector products implies that the incomplete Cholesky
preconditioner improved the rate of convergence of Lanczos-CG for both methods.
However, in the case of the Steihaug-Toint method, preconditioning did not improve
the overall performance in terms of function evaluations; in fact, the unpreconditioned
method performed better in many cases (see, e.g., chainwoo, genrose, ncb20, noncvxu2,
or noncvxun).

We summarize results from Tables 1–7 using performance profiles (in log2 scale)
proposed by Dolan and Moré [5]. Let card(S) denote the number of elements in a
finite set S. Let P denote the set of problems used for a given numerical experiment.
For each method s we define the function πs : [0, rM ] 7→ R

+ such that

πs(τ) =
1

card(P)
card({p ∈ P : log2(rp,s) ≤ τ}),

where rp,s denotes the ratio of number of function evaluations needed to solve problem
p with method s and the least number of function evaluations needed to solve problem
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Table 5
Steihaug-Toint and IP-SSM with diagonal preconditioning. CUTEr problems F–Z.

Steihaug IP-SSM

Problem fe prods f(x) rel(‖g‖2) fe prods f(x) rel(‖g‖2)

fletchcr 1665 13552 1.06e-09 1.26e-05 1624 17914 1.10e-10 3.22e-06

fminsrf2 83 190 1.00e+00 2.27e-05 72 3429 1.00e+00 3.52e-06

freuroth 23 22 1.21e+05 3.89e-06 14 38 1.21e+05 2.12e-05

genhumps 1346 1315 1.02e+03 8.90e-03 * * * *

genrose 1930 3786 1.00e+00 1.15e-06 839 10499 1.00e+00 5.23e-06

indef * * * * 81 797 -4.77e+09 1.17e+00

liarwhd 26 27 2.09e-05 3.38e-06 17 75 6.13e-08 1.85e-07

ncb20 451 462 8.93e+02 1.28e-06 94 1648 9.17e+02 1.45e-06

ncb20b 10 60 1.68e+03 1.50e-05 9 78 1.68e+03 1.13e-05

noncvxu2 753 504 5.10e+06 8.63e-03 44 322 1.23e+06 8.15e-03

noncvxun 569 399 4.00e+06 8.26e-03 43 371 1.18e+06 8.06e-03

nondia 83 63 9.91e-01 7.33e-07 5 18 1.02e-07 4.76e-07

nondquar 26 98 5.53e-04 9.14e-07 16 114 6.71e-04 6.92e-07

powellsg 23 40 4.47e-03 4.83e-06 15 90 7.20e-03 7.16e-06

quartc 50 28 6.28e+10 2.37e-03 28 64 3.17e+10 1.28e-03

scosine 24 22 -9.99e+02 3.96e-07 8 44 -2.99e+03 1.64e-05

schmvett 14 25 -2.99e+03 1.35e-05 84 2525 7.11e+02 2.24e+00

sinquad 35 31 -2.94e+05 3.47e-10 18 86 -2.94e+05 9.20e-07

sparsine 30 158 9.28e-03 6.41e-06 11 217 9.82e-03 1.60e-06

sparsqur 25 26 1.31e-03 1.56e-06 14 59 6.24e-03 2.82e-06

spmsrtls 69 101 6.91e-08 1.62e-05 22 375 3.30e-09 1.63e-06

srosenbr 20 17 3.25e-05 1.22e-06 9 34 6.30e-07 1.39e-07

testquad 28 16 5.52e-26 1.49e-17 10 28 1.28e+01 1.84e-06

tointgss 21 17 1.00e+01 1.13e-05 18 46 1.00e+01 4.38e-05

tquartic 16 24 6.46e-13 4.47e-07 11 46 5.98e-17 1.98e-07

tridia 24 27 4.41e-06 3.54e-06 12 54 7.50e-06 7.58e-06

vardim 56 34 4.53e+08 1.28e-06 13 44 6.87e+08 1.75e-06

woods 27 26 1.97e+03 3.04e-06 13 43 1.97e+03 3.16e-06

p. The number rM denotes the maximum value of log2(rp,s). Figures 9–11 depict the
functions πs for each of the methods tested.

5. Concluding Remarks. The numerical results suggest that when the solu-
tion of the trust-region subproblem lies on the boundary of the trust region, solving
the subproblem more accurately can decrease the overall number of function evalua-
tions. The numerical results indicate that when no preconditioning is used, IP-SSM

outperforms Steihaug’s method in terms of function evaluations and may be more
efficient when the cost of a function evaluation is expensive relative to the cost of a
matrix-vector product.

Gould et al. [15] found that preconditioners similar to those used here did not sig-
nificantly improve the convergence rate for either the GLTR or Steihaug-Toint method.
However, our results indicate that there can be benefits when preconditioning IP-SSM.
In particular, preconditioning may provide a substantial decrease in the number of
matrix-vector products.

Our experiments indicate that the increase in function evaluations observed with
the preconditioned Steihaug-Toint method is the result of using a different trust-region
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Fig. 6. Steihaug-Toint and IP-SSM with diagonal preconditioning. CUTEr
problems F–Z.
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problems A–E.

norm at each iteration. There are two potential difficulties associated with altering
the shape of the trust region: (i) the preconditioner that defines the trust-region norm
may become ill-conditioned; and (ii) there may be no simple relationship between the
trust-region radii of consecutive iterations.

More generally, the results of Section 4 indicate that it is possible to solve the
trust-region subproblem efficiently when the trust-region scaling is chosen indepen-
dently of the preconditioner.
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Table 6
Steihaug-Toint and IP-SSM with ICFS preconditioning. CUTEr problems A–E.

Steihaug IP-SSM

Problem fe prods f(x) rel(‖g‖2) fe prods f(x) rel(‖g‖2)

arwhead 14 10 2.32e-10 1.21e-07 7 22 8.52e-11 6.15e-08

bdqrtic 22 15 3.98e+03 5.20e-07 11 41 3.98e+03 6.35e-07

broydn7d 100 63 3.65e+02 4.92e-06 43 176 3.70e+02 1.56e-06

brybnd 19 14 3.59e-12 4.35e-09 17 51 6.43e-08 5.17e-06

chainwoo 100 71 6.36e+01 5.38e-06 21 64 3.93e+03 7.32e-06

cosine 29 20 -9.99e+02 8.75e-08 11 22 -9.99e+02 1.03e-05

cragglvy 27 19 3.36e+02 7.04e-07 15 54 3.36e+02 6.35e-07

curly10 40 22 -1.00e+05 8.75e-07 16 114 -1.00e+05 3.17e-09

curly20 27 19 -1.00e+05 1.82e-10 16 108 -1.00e+05 1.38e-12

curly30 60 32 -1.00e+05 2.96e-12 14 112 -1.00e+05 2.82e-10

dixmaana 16 11 1.00e+00 6.65e-06 12 34 1.00e+00 1.58e-05

dixmaanb 18 12 1.00e+00 1.76e-06 12 39 1.00e+00 6.03e-06

dixmaanc 28 19 1.00e+00 1.12e-05 13 39 1.00e+00 1.94e-08

dixmaand 49 28 1.00e+00 7.43e-06 20 122 1.00e+00 3.93e-06

dixmaane 46 28 1.00e+00 3.97e-07 17 64 1.00e+00 7.67e-08

dixmaanf 29 20 1.00e+00 3.85e-06 20 64 1.00e+00 8.40e-06

dixmaang 37 22 1.00e+00 9.28e-06 24 93 1.02e+00 1.29e-05

dixmaanh 35 21 1.01e+00 1.06e-05 37 202 1.07e+00 9.56e-06

dixmaani 26 19 1.00e+00 1.13e-06 13 44 1.00e+00 3.93e-08

dixmaanj 29 20 1.01e+00 1.15e-05 26 152 1.00e+00 4.21e-06

dixmaank 39 26 1.01e+00 1.08e-05 29 169 1.00e+00 4.59e-06

dixmaanl 42 28 1.01e+00 6.38e-06 25 146 1.02e+00 7.85e-06

dixon3dq 4 3 9.42e-29 2.87e-15 11 70 2.45e-09 4.49e-07

dqdrtic 21 12 3.03e-26 1.30e-16 13 26 4.12e-14 1.09e-10

dqrtic 50 28 6.28e+10 2.37e-03 28 69 3.18e+10 1.26e-03

edensch 25 18 2.19e+02 1.28e-07 16 52 2.19e+02 1.32e-06

eg2 8 6 -9.99e+02 2.90e-09 13 60 -9.99e+02 1.47e-06

engval1 19 13 1.11e+03 6.42e-06 13 32 1.11e+03 1.85e-06

extrosnb 38 27 1.96e-02 6.28e-06 24 69 2.96e-02 8.99e-06
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