Physics 742 - Graduate Quantum Mechanics 2

Second Exam, Spring 2018

The points for each question are marked. Each question is worth 20 points. Some possibly useful formulas appear at the end of the test.

1. A particle of mass m is in one dimension in the potential $V(x)= \begin{cases}\frac{1}{2} m \omega_{+}^{2} x^{2} & \text { for } x>0, \\ \frac{1}{2} m \omega_{-}^{2} x^{2} & \text { for } x<0 .\end{cases}$ Estimate the energy of the n 'th eigenstate using the WKB approximation.
2. A particle in the ground state of a three-dimensional spherical infinite square well of radius a has wave function $\psi(\mathbf{r})=\frac{1}{r \sqrt{2 \pi a}} \sin \left(\frac{\pi r}{a}\right)$ in the allowed region $r<a$. The radius of this potential well is now increased to $2 a$. What is the probability that the particle remains in the ground state if the radius increases from a to $2 a$ (a) adiabatically, or (b) suddenly?
3. An electron of mass m at $t=0$ is in the ground state $|\Psi(t=0)\rangle=|0,0,0\rangle$ of a threedimensional harmonic oscillator with frequency ω. In an attempt to excite it to a higher energy state, a small perturbation $W=\gamma X Y t e^{-\lambda t}$ is turned on starting at $t=0$ and left on. To leading order, what states $|n, p, q\rangle$ (other than the ground state) can be excited, and what is the probability of it ending in this/these states at $t=\infty$?
4. A system consists of a superposition of a zero photon state and a one photon states, so that $|\Psi\rangle=\frac{1}{\sqrt{3}}(|0\rangle-i \sqrt{2}|1, \mathbf{q}, \tau\rangle)$ where $\mathbf{q}=q \hat{\mathbf{z}}$, and $\boldsymbol{\varepsilon}_{q \tau}=\hat{\mathbf{x}}$. What are the expectation values of the electric and magnetic field $\langle\mathbf{E}(\mathbf{r})\rangle$ and $\langle\mathbf{B}(\mathbf{r})\rangle$?
5. An electron is in the $|3,1,1\rangle$ state of the 3 D cubical infinite square well with allowed region $x, y, z \in[0, a]$. Show that via the dipole transition, it can only decay to one of the states $|1,1,1\rangle$ or $|2,1,1\rangle$, and calculate the corresponding rate.

Possibly Helpful Formulas:

$\left.$| 1D H.O.: |
| :---: |
| $X=\sqrt{\frac{\hbar}{2 m \omega}}\left(a+a^{\dagger}\right)$ |
| $a\|n\rangle=\sqrt{n}\|n-1\rangle$ |
| $a^{\dagger}\|n\rangle=\sqrt{n+1}\|n+1\rangle$ |${ }^{2} \right\rvert\,$

Electric and Magnetic Field Operators
$\mathbf{E}(\mathbf{r})=\sum_{\mathbf{k}, \sigma} \sqrt{\frac{\hbar \omega_{k}}{2 \varepsilon_{0} V}} i\left(a_{\mathbf{k} \sigma} \boldsymbol{\varepsilon}_{\mathbf{k} \sigma} e^{i \mathbf{k} \cdot \mathbf{r}}-a_{\mathbf{k} \sigma}^{\dagger} \boldsymbol{\varepsilon}_{\mathbf{k} \sigma}^{*} e^{-i \mathbf{k} \cdot \mathbf{r}}\right)$
$\mathbf{B}(\mathbf{r})=\sum_{\mathbf{k}, \sigma} \sqrt{\frac{\hbar}{2 \varepsilon_{0} V \omega_{k}}} i \mathbf{k} \times\left(a_{\mathbf{k} \sigma} \boldsymbol{\varepsilon}_{\mathbf{k} \sigma} e^{i \mathbf{k} \cdot \mathbf{r}}-a_{\mathbf{k} \sigma}^{\dagger} \boldsymbol{\varepsilon}_{\mathbf{k} \sigma}^{*} e^{-i \mathbf{k} \cdot \mathbf{r}}\right)$

1D Infinite Square Well $\psi_{n}(x)=\sqrt{2 / a} \sin (\pi n x / a)$ $E_{n}=\frac{\pi^{2} \hbar^{2} n^{2}}{2 m a^{2}}$ Spontaneous Decay: $\Gamma=\frac{4 \alpha}{3 c^{2}} \omega_{I F}^{3}\left|\mathbf{r}_{F I}\right|^{2}$

Time-dependent Perturbation Theory $S_{F I}=\delta_{F I}+(i \hbar)^{-1} \int_{0}^{T} d t W_{F I}(t) e^{i \omega_{F I} t}+\cdots$

WKB energies: $\int_{a}^{b} \sqrt{2 m[E-V(x)]} d x=\pi \hbar\left(n+\frac{1}{2}\right)$

Possibly Helpful Integrals: In integrals below, m and n are non-negative integers

$$
\begin{gathered}
\int_{0}^{\infty} x^{n} e^{-\alpha x} d x=n!\alpha^{-(n+1)}, \quad \int_{0}^{y} \sqrt{a-b x^{2}} d x=\frac{a}{2 \sqrt{b}} \sin ^{-1}(y \sqrt{b / a})+\frac{y}{2} \sqrt{a-b y^{2}} \\
\int_{0}^{a} \sin (\pi n x / a) \sin (\pi m x / a) d x=\int_{0}^{a} \sin \left[\pi\left(n+\frac{1}{2}\right) x / a\right] \sin \left[\pi\left(m+\frac{1}{2}\right) x / a\right] d x=\frac{1}{2} a \delta_{n m} \\
\int_{0}^{a} \sin (\pi n x / a) \sin \left[\pi\left(m+\frac{1}{2}\right) x / a\right] d x=4(-1)^{m+n} a n /\left[\pi\left(4 m^{2}+4 m+1-4 n^{2}\right)\right], \\
\int_{0}^{a} x \sin \left(\frac{\pi n x}{a}\right) \sin \left(\frac{\pi m x}{a}\right) d x=\left\{\begin{array}{cc}
a^{2} / 4 & \text { if } n=m, \\
2 a^{2} n m\left[(-1)^{n+m}-1\right] /\left[\pi^{2}\left(n^{2}-m^{2}\right)^{2}\right] & \text { if } n \neq m .
\end{array}\right.
\end{gathered}
$$

Possibly Helpful Integrals: In integrals below, m and n are non-negative integers

$$
\begin{gathered}
\int_{0}^{\infty} x^{n} e^{-\alpha x} d x=n!\alpha^{-(n+1)}, \quad \int_{0}^{y} \sqrt{a-b x^{2}} d x=\frac{a}{2 \sqrt{b}} \sin ^{-1}(y \sqrt{b / a})+\frac{y}{2} \sqrt{a-b y^{2}} \\
\int_{0}^{a} \sin (\pi n x / a) \sin (\pi m x / a) d x=\int_{0}^{a} \sin \left[\pi\left(n+\frac{1}{2}\right) x / a\right] \sin \left[\pi\left(m+\frac{1}{2}\right) x / a\right] d x=\frac{1}{2} a \delta_{n m} \\
\int_{0}^{a} \sin (\pi n x / a) \sin \left[\pi\left(m+\frac{1}{2}\right) x / a\right] d x=4(-1)^{m+n} a n /\left[\pi\left(4 m^{2}+4 m+1-4 n^{2}\right)\right], \\
a_{0}^{a} x \sin \left(\frac{\pi n x}{a}\right) \sin \left(\frac{\pi m x}{a}\right) d x=\left\{\begin{array}{cc}
& \text { if } n=m, \\
2 a^{2} n m\left[(-1)^{n+m}-1\right] /\left[\pi^{2}\left(n^{2}-m^{2}\right)^{2}\right] & \text { if } n \neq m .
\end{array}\right.
\end{gathered}
$$

Possibly Helpful Integrals: In integrals below, m and n are non-negative integers

$$
\begin{gathered}
\int_{0}^{\infty} x^{n} e^{-\alpha x} d x=n!\alpha^{-(n+1)}, \quad \int_{0}^{y} \sqrt{a-b x^{2}} d x=\frac{a}{2 \sqrt{b}} \sin ^{-1}(y \sqrt{b / a})+\frac{y}{2} \sqrt{a-b y^{2}} \\
\int_{0}^{a} \sin (\pi n x / a) \sin (\pi m x / a) d x=\int_{0}^{a} \sin \left[\pi\left(n+\frac{1}{2}\right) x / a\right] \sin \left[\pi\left(m+\frac{1}{2}\right) x / a\right] d x=\frac{1}{2} a \delta_{n m} \\
\int_{0}^{a} \sin (\pi n x / a) \sin \left[\pi\left(m+\frac{1}{2}\right) x / a\right] d x=4(-1)^{m+n} a n /\left[\pi\left(4 m^{2}+4 m+1-4 n^{2}\right)\right], \\
\int_{0}^{a} x \sin \left(\frac{\pi n x}{a}\right) \sin \left(\frac{\pi m x}{a}\right) d x=\left\{\begin{array}{cc}
a^{2} / 4 & \text { if } n=m, \\
2 a^{2} n m\left[(-1)^{n+m}-1\right] /\left[\pi^{2}\left(n^{2}-m^{2}\right)^{2}\right] & \text { if } n \neq m .
\end{array}\right.
\end{gathered}
$$

