Physics 742 – Graduate Quantum Mechanics 2 Midterm Exam, Spring 2018

Please note that some possibly helpful formulas and integrals appear on the second page. Each question is worth twenty points.

1. A quantum system in the state $|\psi\rangle$ is measured using the operator A, where in some basis,

$$|\psi\rangle = \frac{1}{3} \begin{pmatrix} 1\\2\\2 \end{pmatrix}$$
 and $A = a \begin{pmatrix} 0 & 1 & 0\\1 & 0 & 0\\0 & 0 & 1 \end{pmatrix}$

What are the possible results that could occur, and what are their corresponding probabilities? In each case, what is the state vector after the measurement in this basis?

- 2. Two particles of mass *m* lies in one-dimensional coupled harmonic oscillator with potential $V(X_1, X_2) = \frac{1}{2}m\omega_0^2(2X_1^2 2\sqrt{2}X_1X_2 + 3X_2^2)$. Find the energy of all eigenstates.
- 3. A particle of mass *m* lies in a two-dimensional symmetric harmonic oscillator with classical frequency ω . It is placed in a two-dimensional coherent state labeled by two complex numbers *z* and *w*, so that the normalized state $|z, w\rangle$ satisfies

$$a_{x}|z,w\rangle = z|z,w\rangle, \quad a_{y}|z,w\rangle = w|z,w\rangle,$$

where a_x and a_y are the lowering operators in the x- and y-direction respectively. Find the expectation value for this state $|z, w\rangle$ for the angular momentum operator $L_z = XP_y - YP_x$.

- 4. Two identical non-interacting spinless particles are placed in a 1D infinite square well with allowed region 0 < x < a. One of them is in the ground state (n = 1) and the other in the first excited state (n = 2).
 - (a) Find the wave function for the two particles ψ(x₁, x₂) if they are (i) distinguishable,
 (ii) bosons, or (iii) fermions.
 - (b) In each case, find the probability density that they are both at $x = \frac{1}{3}a$.
- 5. An electron with its spin up along an axis in the *xy*-plane at an angle ϕ compared to the *xz*-axis has normalized state vector given by $|\psi\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ e^{i\phi} \end{pmatrix}$. Suppose this electron is at an

angle randomly chosen from $\phi \in \{-\frac{1}{3}\pi, 0, \frac{1}{3}\pi\}$, each choice equally probable.

- (a) What is the state operator ρ written as a 2×2 matrix?
- (b) What would be the expectation values of each of the spin operators, given by

$$S_x = \frac{\hbar}{2} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad S_y = \frac{\hbar}{2} \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad S_z = \frac{\hbar}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

Possibly Helpful Formulas	Coherent States: $a z\rangle = z z\rangle, \langle z a^{\dagger} = \langle z z^{*}$	1D Harmonic Oscillator $P_{min} : \frac{\hbar m \omega}{2} (r_{min}^{\dagger} - r_{min})$
Coupled H.O.: $V = \frac{1}{2} \sum_{i,j} K_{ij} X_i X_j$ $\omega_i = \sqrt{k_i/m}$	Infinite Square Well Allowed region $0 < x < a$ $\phi_n(x) = \sqrt{\frac{2}{a}} \sin\left(\frac{\pi nx}{a}\right)$ $E_n = \frac{\pi^2 \hbar^2 n^2}{2ma^2}$	$P = i\sqrt{\frac{2}{2}}(a^{\dagger} - a)$ $X = \sqrt{\frac{\hbar}{2m\omega}}(a + a^{\dagger})$ $a n\rangle = \sqrt{n} n-1\rangle$ $a^{\dagger} n\rangle = \sqrt{n+1} n+1\rangle$

Possibly Helpful Formulas	Coherent States: $a z\rangle = z z\rangle, \langle z a^{\dagger} = \langle z z^{*}$	1D Harmonic Oscillator $P = i \sqrt{\frac{\hbar m \omega}{a^{\dagger} - a}} (a^{\dagger} - a)$
Coupled H.O.: $V = \frac{1}{2} \sum_{i,j} K_{ij} X_i X_j$ $\omega_i = \sqrt{k_i/m}$	Infinite Square Well Allowed region $0 < x < a$ $\phi_n(x) = \sqrt{\frac{2}{a}} \sin\left(\frac{\pi nx}{a}\right)$ $E_n = \frac{\pi^2 \hbar^2 n^2}{2ma^2}$	$X = \sqrt{\frac{\hbar}{2m\omega}} (a + a^{\dagger})$ $a n\rangle = \sqrt{n} n-1\rangle$ $a^{\dagger} n\rangle = \sqrt{n+1} n+1\rangle$

Possibly Helpful Formulas	Coherent States: $a z\rangle = z z\rangle, \langle z a^{\dagger} = \langle z z^{*}$	1D Harmonic Oscillator
Coupled H.O.: $V = \frac{1}{2} \sum_{i,j} K_{ij} X_i X_j$ $\omega_i = \sqrt{k_i/m}$	Infinite Square Well Allowed region $0 < x < a$ $\phi_n(x) = \sqrt{\frac{2}{a}} \sin\left(\frac{\pi nx}{a}\right)$ $E_n = \frac{\pi^2 \hbar^2 n^2}{2ma^2}$	$P = i \sqrt{\frac{2}{2}} (a^{\dagger} - a)$ $X = \sqrt{\frac{\hbar}{2m\omega}} (a + a^{\dagger})$ $a n \rangle = \sqrt{n} n - 1 \rangle$ $a^{\dagger} n \rangle = \sqrt{n+1} n+1 \rangle$

Possibly Helpful Formulas	Coherent States: $a z\rangle = z z\rangle, \langle z a^{\dagger} = \langle z z^{*}$	1D Harmonic Oscillator
	Infinite Square Well Allowed region $0 < x < a$	$P = i \sqrt{\frac{2}{2}} (a^{\dagger} - a)$
Coupled H.O.: $V = \frac{1}{2} \sum K_{ij} X_i X_j$	$\phi_n(x) = \sqrt{\frac{2}{a}} \sin\left(\frac{\pi nx}{a}\right)$	$X = \sqrt{\frac{n}{2m\omega}} \left(a + a^{\dagger} \right)$ $a \mid n \rangle = \sqrt{n} \mid n - 1 \rangle$
$\omega_i = \sqrt{k_i/m}$	$E_n = \frac{\pi^2 \hbar^2 n^2}{2ma^2}$	$a^{\dagger} \left n \right\rangle = \sqrt{n+1} \left n+1 \right\rangle$