
Physics 742 – Graduate Quantum Mechanics 2 
Solutions to First Exam, Spring 2019 

 
 Please note that some possibly helpful formulas are listed below or on the handout.  Each 
question is worth twenty points. 
 
1. A particle of mass m in one dimension is in the potential  ( )V x xα= .  Using the WKB 

method, estimate the energy of the n’th eigenstate.  Hint: I found it useful to define 
2x y=  and z E yα= − . 

 
 We first need to find the turning points, the points where ( )E V x xα= = .  It is pretty 

trivial to rewrite this as 2 2x E α= , with solutions 2 2x E α= ± .  We therefore have 
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We now make two substitutions: first, let 2x y= , and then let z E yα= − .  The latter can be 
inverted to give ( )y E z α= − .  We then have 
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It is now straightforward to solve this for E, so we have 
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 It is worth noting the similarity of functional form of this expression and the form for the 
next problem.  If you substitute n = 0 in this formula, the final factor from this equation works 
out to 0.6429, and the next equation yields 0.625. 
 
 
 
 
Possibly Helpful Integrals 
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2. A particle of mass m in one dimension is in the potential  ( )V x xα= .  Using the 

variational principle with trial wave function ( ) 2xx e λψ −= , estimate the energy of the 

ground state.  I recommend using 
22P Pψ ψ ψ=  when estimating the kinetic term. 

 
 We need to calculate ψ ψ , 2Pψ ψ , and ( )V xψ ψ .  We have 
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The normalized expectation value of the energy, therefore, would be 

( )
2 2 2

2 3/21 1 .
2 2 4 8 2

H
E P V

m m m
ψ ψ λ λ λ α πλ ψ ψ ψ ψ αλ π
ψ ψ ψ ψ λ

−  = = + = + = +     

   

We now wish to minimize this with respect to λ , which we do by taking the derivative. 
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We now substitute this back in to estimate the ground state energy: 
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3. A particle of mass m in two dimensions is in the potential 
( ) ( )2 2 2 2 21

2V x m X Y X Yω δ= + + , where δ  is small.  Name and find the energies of 
the eigenstates of the unperturbed Hamiltonian in the limit 0δ = .  Find the 
ground state eigenstate to first order in δ , and its energy to second order in δ . 

 
To find the ground state eigenstate we need to find 00W , which is 
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 The ground state eigenstate, to first order in δ , is 
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The ground state energy is given by 
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4. An electron is in a three-dimensional harmonic oscillator with Coulomb potential 
( ) 2 21

2cV r m rω= .   

(a) Write the spin-orbit coupling in terms of 2L , 2S , and 2J , where = +J L S .  
 
 We start by using the standard trick of writing  
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Substituting this in, together with the given Coulomb potential, we have 
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(b) For l = 0, what are the eigenvalues or possible eigenvalues of 2L , 2S , and 2J ? Argue 

that for states with l = 0, the spin-orbit coupling causes no shift in energy. 
 
 Electrons have spin ½, and j runs from l s−  to l s+ .  In the case of l = 0, the only 

possibility is 1
2j s= = , and therefore ( )2 2 2 231 1
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Hence there is no shift in the energy. 
 

(c) For l = 1, what are the eigenvalues or possible eigenvalues of 2L , 2S , and 2J ?  Find 
the corresponding shift in energies. 

 
 We still have 2 23
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5. A particle of mass µ  and wave number k moving in the +z direction scatters from a 

potential 
2 2

0V V xye α−= r , where 0V  is small.  Find the differential and total cross-section 
in the first Born approximation.  For the total cross-section, you may leave one integral 
uncompleted. 

 
 We must first find the Fourier transform.  In this case, this is most easily done in 
Cartesian coordinates, so we have 
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We now substitute this into the formula for differential cross-section to yield 
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We now recall that ′= −K k k .  The initial momentum is ˆk=k z , and the final is ˆk′ =k r , so 

( )ˆ ˆ sin cos ,sin sin ,cos 1k k k θ φ θ φ θ′= − = − = −K k k r z  

We also can use the formulal (or rederive it) ( )2 22 1 cosk θ= −K .  We therefore have 
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We now simply integrate this over solid angle, so we have 
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There is nothing inherently difficult about the final integral, but the result will be annoyingly 
complicated, so we’ll just leave this last integral undone. 
 
 
 
 
 
Possibly Helpful Formulas 
 
 
 
 

1D Harmonic Oscillator  
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Born Approximation 
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Spin-Orbit Coupling 
( )

SO 2 2

1
4

cdV rgW
m c r dr

= ⋅L S

 
 


