
Physics 742 – Graduate Quantum Mechanics 2 

Midterm Exam, Spring 2018 
 
 Please note that some possibly helpful formulas and integrals appear on the second page.  
Each question is worth twenty points. 
 
1. A quantum system in the state  is measured using the operator A, where in some 

basis,  
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What are the possible results that could occur, and what are their corresponding 
probabilities? In each case, what is the state vector after the measurement in this basis? 

 
 We first need to find the eigenvalues of the matrix A.  Since A is block diagonal, as 
marked above, we can see that one eigenvalue simply has its eigenstate in the third position, with 
eigenvalue a.  To find the other two eigenstates and eigenvalues, we need to find the eigentates 

of the matrix 
0 1

1 0
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.  This comes up so often that we know the eigenvectors; they are 
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which have eigenvalues of 1 .  We multiply this by a to get the eigenvalues, and putting it back 
into three-component column matrix.  Our three eigenvectors are therefore 
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I have labeled the eigenstates by their eigenvalues, with an additional label when needed for the 
degenerate eigenvalues. 
 The possible outcomes for the measurements are simply a , with corresponding 
probabilities 
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The state afterwards will depend on which case we are in, so we have 
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2. Two particles of mass m lies in one-dimensional coupled harmonic oscillator with 

potential    2 2 21
1 2 0 1 1 2 22, 2 2 2 3V X X m X X X X   .  Find the energy of all eigenstates. 

  

 We first write the interaction in the form   1
2 ,

,i j ij i ji j
V X X K X X  , where ijK  is 

symmetric.  Remembering that the cross-term has to be split between 12K  and 21K , we can write 

K as a two by two matrix: 
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We then need to find the eigenvalues of K.  If we factor out the common factor of 2
0m , 

the remaining matrix’s eigenvalues can be found by solving the characteristic equation: 
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 The roots of this equation are obviously 1   and 4  , which means that the 
eigenvalues of K are 2

1 0k m  and 2
2 04k m .  We then find the classical frequencies, which are 
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The energies corresponding to these frequencies take the from  1
2i iE n  , so if we call our 

states 1 2,n n , the corresponding energies will be the sum of these two contributions, or 
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3. A particle of mass m lies in a two-dimensional symmetric harmonic oscillator with 
classical frequency  .  It is placed in a two-dimensional coherent state labeled by two 
complex numbers z and w, so that the normalized state ,z w  satisfies 

, , , , , ,x ya z w z z w a z w w z w   

 where xa  and ya  are the lowering operators in the x- and y-direction respectively.  Find 

the expectation value for this state ,z w  for the angular momentum operator 

z y xL XP YP  . 

 
 We first note that we can get two addition pieces of information by taking the Hermitian 
conjugate of these relations, namely 

† * † *, , , , , .x yz w a z w z z w a z w w   

 We now write the angular momentum operator in terms of raising and lowering 
operators, which will yield 
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We note that we were assisted in this simplification by the fact that every pair of operators that 
were multiplied always commute.  We now simply compute the expectation value by always 
letting the lowering operators act to the right, and the lowering operators to the right, to yield 
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Once we had simplified, it, that wasn’t too bad! 
 



4. Two identical non-interacting spinless particles are placed in a 1D infinite square well 
with allowed region 0 < x < a.  One of them is in the ground state (n = 1) and the other 
in the first excited state (n = 2). 
(a) Find the wave function for the two particles  1 2,x x  if they are (i) distinguishable, 

(ii) bosons, or (iii) fermions. 
 
 For non-interacting distinguishable particles, they can simply be put in their two states, 
with state vector 1 2,  .  The resulting wave function is 

      1 2
1 2 1 1 2 2
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For bosons, the state vector must be symmetrized, so we are in the state  1
1 2 2 12
, ,    .  

For fermions, they must be anti-symmetrized, so we are in the state  1
1 2 2 12
, ,    .  The 

corresponding wave functions in each case are 
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(b) In each case, find the probability density that they are both at 1

3x a . 

 
 The probability density is just the wave function at this point squared, which is 
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5. An electron with its spin up along an axis in the xy-plane at an angle   compared to the 

x-axis has normalized state vector given by 
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.  Suppose this electron is at 

an angle randomly chosen from  1 1
3 3,0,    , each choice equally probable. 

(a) What is the state operator   written as a 2 2  matrix? 
 
 The state operator is given by 
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(b) What would be the expectation values of each of the spin operators, given by 
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 The expectation value for any operator is  TrA A , so we have 
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So we’re done! 
 
 
Possibly 
Helpful 
Formulas 
 
 
 
 

Infinite Square Well 
Allowed region 0 x a   
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1D Harmonic Oscillator  
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