Solutions to Chapter 15

7. [15] A spin $1 / 2$ particle of mass \boldsymbol{m} lies in a one-dimensional spin-dependant potential $H_{0}=P^{2} / 2 m+\frac{1}{2} m \omega^{2} X^{2}|+\rangle\langle+|$. The potential only affects particles in a spin-up state.
(a) [4] Find the discrete energy eigenstates for spin-up ($|+, i\rangle$) and the continuum energy eigenstates for spin-down $(|-, \beta\rangle)$. Also, identify their energies.

For spin up particles, the Hamiltonian is $H_{0}=P^{2} / 2 m+\frac{1}{2} m \omega^{2} X^{2}$, which is a harmonic oscillator potential. The eigenstates are labeled $|+, n\rangle$, where the + denotes spin up, and have energy $\hbar \omega\left(n+\frac{1}{2}\right)$. The ground state, for example, is given by

$$
\psi_{0,+}(x)=\left(\frac{m \omega}{\pi \hbar}\right)^{1 / 4} \exp \left(-\frac{m \omega x^{2}}{2 \hbar}\right)|+\rangle .
$$

For spin down particles, the Hamiltonian is $H_{0}=P^{2} / 2 m$, which is just the free particle Hamiltonian. These states can be chosen to be labeled by their wave number, which we could denote by $|-, k\rangle$. They have energy $\hbar^{2} k^{2} / 2 m$. Properly normalized, they look like

$$
\psi_{k,-}(x)=\frac{1}{\sqrt{2 \pi}} e^{i k x}|-\rangle .
$$

(b) [11] At $\boldsymbol{t}=\mathbf{0}$, a spin-dependant perturbation of the form $V=\hbar \gamma \sigma_{x}$, where σ_{x} is a Pauli matrix, is turned on. Calculate the rate Γ at which the spin-up ground state "decays" to a continuum state.

To leading order, the rate for the transition should be given by

$$
\begin{aligned}
\Gamma & \left.\left.=2 \pi \hbar^{-1}|\langle F| V| I\right\rangle\left.\right|^{2} \delta\left(E_{f}-E_{i}\right)=2 \pi \hbar \gamma^{2}\left|\langle-, k| \sigma_{x}\right|+, 0\right\rangle\left.\right|^{2} \delta\left(E_{f}-E_{i}\right) \\
& \left.=2 \pi \hbar \gamma^{2}\left|\sqrt[4]{\frac{m \omega}{\pi \hbar}} \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} d x \exp \left(-\frac{m \omega x^{2}}{2 \hbar}-i k x\right)\langle-| \sigma_{x}\right|+\right\rangle\left.\right|^{2} \delta\left(E_{f}-E_{i}\right) \\
& =\hbar \gamma^{2} \sqrt{\frac{m \omega}{\pi \hbar}}\left|\sqrt{\frac{2 \pi \hbar}{m \omega}} \exp \left(-\frac{\hbar k^{2}}{2 m \omega}\right)\right|^{2} \delta\left(E_{f}-E_{i}\right)=2 \hbar \gamma^{2} \sqrt{\frac{\pi \hbar}{m \omega}} \exp \left(-\frac{\hbar k^{2}}{m \omega}\right) \delta\left(\frac{\hbar^{2} k^{2}}{2 m}-\frac{\hbar \omega}{2}\right) .
\end{aligned}
$$

This would be the rate to a particular wave number k if the states were properly normalized. To finish the problem, we simply sum (integrate) over the continuum of final states to yield

$$
\Gamma=\int_{-\infty}^{\infty} 2 \hbar \gamma^{2} \sqrt{\frac{\pi \hbar}{m \omega}} \exp \left(-\frac{\hbar k^{2}}{m \omega}\right) \delta\left(\frac{\hbar^{2} k^{2}}{2 m}-\frac{\hbar \omega}{2}\right) d k=2 \hbar \gamma^{2} \sqrt{\frac{\pi \hbar}{m \omega}} \sum_{k} \exp \left(-\frac{\hbar k^{2}}{m \omega}\right)\left|\frac{\hbar^{2} k}{m}\right|^{-1} .
$$

The sum is over all values of k where the delta function vanishes. It is pretty easy to see that these points are $k= \pm \sqrt{\omega m / \hbar}$. There are two such points, and each of them contributes exactly the same amount, so our rate is

$$
\Gamma=2 \cdot 2 \hbar \gamma^{2} \sqrt{\frac{\pi \hbar}{m \omega}} \exp \left(-\frac{\hbar}{m \omega} \frac{m \omega}{\hbar}\right) \frac{m}{\hbar^{2}} \sqrt{\frac{\hbar}{m \omega}}=\frac{4 \sqrt{\pi} \gamma^{2}}{e \omega} .
$$

A rather bizarre looking answer, but neat.

