Solutions to Chapter 15

4. [10] A particle of mass m is in the ground state $|1\rangle$ of an infinite square well with allowed region $0<X<a$. To this potential is added a harmonic perturbation $W(t)=A X \cos (\omega t)$, where \boldsymbol{A} is small.
(a) [6] Calculate the transition rate $\Gamma(1 \rightarrow n)$ for a transition to another level. Don't let the presence of a delta function bother you. What angular frequency ω is necessary to make the transition occur to level $n=2$?

We first rewrite this perturbation in the form $W(t)=\frac{1}{2} A X\left(e^{i \omega t}+e^{-i \omega t}\right)$. Our interaction is thus $W=\frac{1}{2} A X$, and the matrix elements we require are $W_{1 n}=\frac{1}{2} A\langle n| X|1\rangle$. The eigenstates and energies of the unperturbed square well are

$$
\psi_{n}(x)=\sqrt{\frac{2}{a}} \sin \left(\frac{\pi n x}{a}\right), \quad E_{n}=\frac{\pi^{2} n^{2} \hbar^{2}}{2 m a^{2}} .
$$

Maple is happy to do the integrals for us. We find the matrix elements we want are

$$
W_{n 1}=\frac{A}{2}\langle n| X|1\rangle=\frac{A}{2} \cdot \frac{2}{a} \int_{0}^{a} x \sin \left(\frac{\pi n x}{a}\right) \sin \left(\frac{\pi x}{a}\right) d x=-\frac{2 A a n}{\pi^{2}\left(n^{2}-1\right)^{2}}\left[1+(-1)^{n}\right] .
$$

```
> assume(n::integer);
> integrate(A/a*sin(Pi*n*x/a)*sin(Pi*x/a)*x,x=0..a);
```

The rate then is given by

$$
\Gamma(1 \rightarrow n)=\frac{2 \pi}{\hbar}\left|W_{n 1}\right|^{2} \delta\left(E_{n}-E_{1}-\hbar \omega\right)=\frac{8 a^{2} A^{2} n^{2}\left[1+(-1)^{n}\right]^{2}}{\pi^{3} \hbar\left(n^{2}-1\right)^{4}} \delta\left(\frac{\pi^{2} \hbar^{2}}{2 m a^{2}}\left(n^{2}-1\right)-\hbar \omega\right)
$$

For the transition to $n=2$, we need the delta function to vanish, which requires a frequency of $\omega=3 \pi^{2} \hbar / 2 m a^{2}$.
(b) [4] Now, instead of keeping a constant frequency, the frequency is tuned continuously, so that at $t=0$ the frequency is 0 , and it rises linearly so that at $t=T$ it has increased to the value $\omega(T)=2 \pi^{2} \hbar / m a^{2}$. The tuning is so slow that at any given time, we may treat it as a harmonic source. Argue that only the $\boldsymbol{n}=2$ state can become populated (to leading order in \boldsymbol{A}). Calculate the probability of a transition using $P(1 \rightarrow 2)=\int_{0}^{T} \Gamma(1 \rightarrow 2) d t$.

The maximum frequency achieved is $4 / 3$ times larger than required to make this transition, enough for the 1 to 2 transition, but not enough for anything higher. We therefore need only consider the transition to $n=2$. The frequency as a function of time is

$$
\omega(t)=\frac{2 \pi^{2} \hbar t}{m a^{2} T}
$$

To find the total transition probability, we then simply integrate the transition rate

$$
P(1 \rightarrow 2)=\int_{0}^{T} \Gamma(1 \rightarrow 2) d t=\frac{128 a^{2} A^{2}}{81 \pi^{3} \hbar} \int_{0}^{T} \delta\left(\frac{3 \pi^{2} \hbar^{2}}{2 m a^{2}}-\frac{2 \pi^{2} \hbar^{2} t}{m a^{2} T}\right) d t=\frac{128 a^{2} A^{2}}{81 \pi^{3} \hbar} \frac{m a^{2} T}{2 \pi^{2} \hbar^{2}}=\frac{64 m a^{4} A^{2} T}{81 \pi^{5} \hbar^{3}} .
$$

