
Physics 742 – Graduate Quantum Mechanics 2 
Solutions to Chapter 15 

 
1. [10] An isolated tritium (hydrogen) atom 3H has its electron in the ground state 

when it suddenly radioactively decays to 3He, (helium) but the nucleus stays in 
the same place (no recoil).  What is the probability that the atom remains in the 
ground state?  What is the probability that it goes into each of the n = 2 states 
2lm ? 

 
 The probability is just ( ) 2

100P I F nlm→ = , but the eigenstate of the initial 
Hamiltonian are not the same as the eigenstate of the final Hamiltonian.  The angular 
integrals will vanish unless l = m = 0, and in this case the angular integral yields one, so 
we have 

( ) ( )2
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The prime doesn’t denote derivative, but rather that the radial wave function must be 
evaluated for Helium, which has the same wave function except 1

0 02a a→ .  We’ll let 
Maple finish it for us, using the online wave functions for hydrogen. 
> for n to 6 do integrate(r^2*subs(a=a/2,radial(n,0))  
  *radial(1,0),r=0..infinity)^2 end do; 

Just for fun, I worked out the first six solutions, with the probabilities listed below.  The 
other 2lm  states, of course, have probability zero. 
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If you add up all these probabilities, it comes to about 97.2%.  Probably most of the 
remaining 2.8% represents the probability that the electron becomes unbound. 



2. [20] A neutral boron atom has a total angular momentum l = 1 and spin s = ½.  
In the absence of a magnetic field, the lowest energy states might be listed as  

1
2, , , 1, , ,j jl s j m j m= , with the 3

2j =  state having higher energy.  The atom is 
placed in a region of space where a magnetic field is being turned on in the +z 
direction.  At first, the spin-orbit coupling dominates, but at late times the 
magnetic interactions dominate. 
(a) [3] Which of the nine operators L, S and J will commute with the 

Hamiltonian at all times?  Note that the state must remain an eigenstate of 
this operator at all times. 

 
 The presence of the magnetic field in the z –direction does not destroy rotational 
invariance around the z-axis.  Since this is generated by Jz, Jz  will commute with the 
Hamiltonian.  None of the others will.  Hence the Jz eigenvalue is always good. 

 
(b) [7] At strong magnetic fields, the states are dominated by the magnetic field.  

The eigenstates are approximately 1
2, , , 1, , ,l s l sl s m m m m= .  For each 

possible value of j l sm m m= + , deduce which state has the lower energy.  
Atoms in strong magnetic fields are discussed in chapter 9, section E. 

 
 The energy of the state , , ,l sl s m m  has a magnetic contribution 

 ( )mag .
2 l s
eBE m gm
µ

= +
  

Although this was computed specifically for hydrogen, it is not hard to see that it applies 
in general.  Now, for any given value of mj, we have j l sm m m= + , so that we can rewrite 
this expression as 

 ( )mag 1 .
2 j s
eBE m g m
µ
 = + − 
  

Since g >1 (it’s around 2), we conclude that for fixed mj, the one with higher ms value 
will have higher energy, in other words, the state 1 1 1

2 2 2, , , 1, , ,l s jl s m m m= −  has more 

energy than 1 1 1
2 2 2, , , 1, , ,l s jl s m m m= + − .  Of course, if 3

2jm = ± , only one of these 
states is allowed. 

 



(c) [10] If we start with a particular value of  , , , jl s j m  (six cases), calculate 

which states , , ,l sl s m m  it might evolve into, assuming the magnetic field 
increases (i) adiabatically (slowly) or (ii) suddenly.  When relevant, give the 
corresponding probabilities.  The relevant Clebsch-Gordan coefficients are 
given in eq. (8.18). 

 
 In the adiabatic case, the higher energy state will always evolve into the higher 
energy state, and the lower into the lower.  For each possible value of mj, we simply map 
the higher energy state to the higher, and lower to lower. 
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The probabilities in every case are 1.  In the sudden approximation, on the other hand, 
there will be probabilities, since any of the six states might evolve into other states with 
the same mj values.  Everything turns into Clebsch-Gordan coefficients.  We have 
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That was more than a little scary.  Note in every case that the probabilities for all the final 
states given an initial state add up to one. 
 


