
Physics 741 – Graduate Quantum Mechanics 1 
Solutions to Chapter 14 

 
6. [25] A particle of mass m scatters from a potential ( ) ( )V r F r aδ= − , so that the 

potential exists only at the surface of a thin sphere of radius a. 
(a) [4] What equation must the radial wave functions ( )lR r  satisfy?  Solve this 

equation in the regions r < a and r > a. 
 
 The radial wave functions must satisfy 
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Away from the point r = a, the problem is simply that of a free particle, and the solution was 
worked out in class.  The answer is spherical Bessel functions, and take the form 
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The constants will generally be different in the different regions. 
 
(b) [6] Apply appropriate boundary at r = 0.  Deduce appropriate boundary conditions 

at r = a. 
 
 We want the radial function to be well-behaved at r = 0, which implies we only want the 
well-behaved jl(r).  Hence we demand 0δ = .  At the boundary r = a, we must take our radial 
Schrödinger equation and integrate it across the boundary.  We first multiply both sides by r, 
then we have 
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Since the first derivative has a finite discontinuity, it follows that the wave function will be 
continuous at the boundary.  This yields two boundary conditions on the wave function: 
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Our goal, ultimately, will be to eliminate γ from these equations and deduce the ratio of β to α. 
 



(c) [8] Assume now that 1ka , so that the scattering will be dominated by the l = 0 
term.  Find a formula for the phase shift 0δ .  Find the differential cross-section.  
Check that your formula agrees with the formula found in section C for the hard 
sphere in the case F →∞ . 

 
 We substitute in the explicit form for l = 0, namely ( )0 sinj x x x=  and 

( )0 cosn x x x= − .  Then our two boundary conditions become 
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Clear the fractions from the first of these and work out the derivatives in the second. 
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Cross multiply these and then cancel the common factor of γ. 
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We hence have the phase shift 
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where we used 1ka  to approximate sin ka ka=  and cos 1ka = .  It’s then easy to see that the 
numerator is much smaller than the denominator, so we can also approximate 0 0sin tanδ δ= , and 
hence the differential cross-section is  
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In the limit of infinite potential, we ignore the first term in the denominator compared to the 
second, so 2d d aσ Ω = , the same as we found before. 

 



(d) [7] Redo the problem using the first Born approximation.  Again assume 1ka  
(effectively, this means Ka = 0).  Check that the resulting differential cross-section in 
this case is identical with that found above in the limit 0F → .  

 
 In the first Born approximation, the differential cross-section is given by 
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In the limit of small F, the previous computation yields 2 2 4 44d d m F aσ Ω =  , so they match. 
 
 


