Physics 741 - Graduate Quantum Mechanics 1

Solutions to Chapter 14

6. [25] A particle of mass \boldsymbol{m} scatters from a potential $V(r)=F \delta(r-a)$, so that the potential exists only at the surface of a thin sphere of radius a.
(a) [4] What equation must the radial wave functions $R_{l}(r)$ satisfy? Solve this equation in the regions $r<a$ and $r>a$.

The radial wave functions must satisfy

$$
\frac{1}{r} \frac{d^{2}}{d r^{2}}\left[r R_{l}(r)\right]=\left[\frac{l^{2}+l}{r^{2}}+U(r)-k^{2}\right] R_{l}(r)=\left[\frac{l^{2}+l}{r^{2}}+\frac{2 m F}{\hbar^{2}} \delta(r-a)-k^{2}\right] R_{l}(r) .
$$

Away from the point $r=a$, the problem is simply that of a free particle, and the solution was worked out in class. The answer is spherical Bessel functions, and take the form

$$
R_{l}(r)= \begin{cases}\gamma j_{l}(k r)-\delta n_{l}(k r) & r<a, \\ \alpha j_{l}(k r)-\beta n_{l}(k r) & r>a .\end{cases}
$$

The constants will generally be different in the different regions.
(b) [6] Apply appropriate boundary at $r=0$. Deduce appropriate boundary conditions at $r=a$.

We want the radial function to be well-behaved at $r=0$, which implies we only want the well-behaved $j_{l}(r)$. Hence we demand $\delta=0$. At the boundary $r=a$, we must take our radial Schrödinger equation and integrate it across the boundary. We first multiply both sides by r, then we have

$$
\begin{aligned}
\int_{a-\varepsilon}^{a+\varepsilon} \frac{d^{2}}{d r^{2}}\left[r R_{l}(r)\right] d r & =\int_{a-\varepsilon}^{a+\varepsilon}\left[\frac{l^{2}+l}{r}+\frac{2 m F}{\hbar^{2}} r \delta(r-a)-k^{2} r\right] R_{l}(r) d r, \\
{\left.\left[r R_{l}(r)\right]^{\prime}\right|_{a-\varepsilon} ^{a+\varepsilon} } & =\frac{2 m F}{\hbar^{2}} a R_{l}(a) .
\end{aligned}
$$

Since the first derivative has a finite discontinuity, it follows that the wave function will be continuous at the boundary. This yields two boundary conditions on the wave function:

$$
\begin{aligned}
\alpha j_{l}(k a)-\beta n_{l}(k a) & =\gamma j_{l}(k a), \\
\alpha\left[r j_{l}(k r)\right]_{r=a}^{\prime}-\beta\left[r n_{l}(k r)\right]_{r=a}^{\prime} & =\frac{2 m F}{\hbar^{2}} a \gamma j_{l}(k a)+\gamma\left[r j_{l}(k r)\right]_{r=a}^{\prime}
\end{aligned}
$$

Our goal, ultimately, will be to eliminate γ from these equations and deduce the ratio of β to α.
(c) [8] Assume now that $k a \ll 1$, so that the scattering will be dominated by the $\boldsymbol{l}=\mathbf{0}$ term. Find a formula for the phase shift δ_{0}. Find the differential cross-section.
Check that your formula agrees with the formula found in section \mathbf{C} for the hard sphere in the case $F \rightarrow \infty$.

We substitute in the explicit form for $l=0$, namely $j_{0}(x)=\sin x / x$ and $n_{0}(x)=-\cos x / x$. Then our two boundary conditions become

$$
\begin{aligned}
\alpha \sin (k a) /(k a)+\beta \cos (k a) /(k a) & =\gamma \sin (k a) /(k a), \\
\alpha[\sin (k r) / k]_{r=a}^{\prime}+\beta[\cos (k r) / k]_{r=a}^{\prime} & =\frac{2 m F}{\hbar^{2}} a \gamma \sin (k a) /(k a)+\gamma[\sin (k r) / k]_{r=a}^{\prime} .
\end{aligned}
$$

Clear the fractions from the first of these and work out the derivatives in the second.

$$
\begin{aligned}
& \alpha \sin (k a)+\beta \cos (k a)=\gamma \sin (k a), \\
& \alpha \cos (k a)-\beta \sin (k a)=\frac{2 m F}{\hbar^{2} k} \gamma \sin (k a)+\gamma \cos (k a) .
\end{aligned}
$$

Cross multiply these and then cancel the common factor of γ.

$$
\begin{gathered}
{[\alpha \cos (k a)-\beta \sin (k a)] \sin (k a)=\left[2 m F \sin (k a) / \hbar^{2} k+\cos (k a)\right][\alpha \sin (k a)+\beta \cos (k a)],} \\
\beta\left[-\hbar^{2} k \sin ^{2}(k a)-\hbar^{2} k \cos ^{2}(k a)-2 m F \sin (k a) \cos (k a)\right]=\alpha 2 m F \sin ^{2}(k a) \\
\frac{\beta}{\alpha}=\frac{-2 m F \sin ^{2}(k a)}{\hbar^{2} k+2 m F \sin (k a) \cos (k a)} .
\end{gathered}
$$

We hence have the phase shift

$$
\tan \delta_{0}=\frac{\beta}{\alpha}=\frac{-2 m F \sin ^{2}(k a)}{\hbar^{2} k+2 m F \sin (k a) \cos (k a)} \approx \frac{-2 m F k^{2} a^{2}}{\hbar^{2} k+2 m F k a}=\frac{-2 m F a^{2} k}{\hbar^{2}+2 m F a} .
$$

where we used $k a \ll 1$ to approximate $\sin k a=k a$ and $\cos k a=1$. It's then easy to see that the numerator is much smaller than the denominator, so we can also approximate $\sin \delta_{0}=\tan \delta_{0}$, and hence the differential cross-section is

$$
\frac{d \sigma}{d \Omega}=\frac{4 \pi}{k^{2}} \sin ^{2} \delta_{0}\left|Y_{0}^{0}\right|^{2}=\frac{1}{k^{2}}\left(\frac{-2 m F k a^{2}}{\hbar^{2}+2 m F a}\right)^{2}=\frac{4 m^{2} F^{2} a^{4}}{\left(\hbar^{2}+2 m F a\right)^{2}} .
$$

In the limit of infinite potential, we ignore the first term in the denominator compared to the second, so $d \sigma / d \Omega=a^{2}$, the same as we found before.
(d) [7] Redo the problem using the first Born approximation. Again assume $k a \ll 1$ (effectively, this means $K a=0$). Check that the resulting differential cross-section in this case is identical with that found above in the limit $F \rightarrow 0$.

In the first Born approximation, the differential cross-section is given by

$$
\begin{aligned}
\frac{d \sigma}{d \Omega} & =\frac{m^{2}}{4 \pi^{2} \hbar^{4}}\left|\int d^{3} \mathbf{r} V(\mathbf{r}) e^{-i \mathbf{K} \cdot \mathbf{r}}\right|^{2} \approx \frac{m^{2}}{4 \pi^{2} \hbar^{4}}\left|\int d^{3} \mathbf{r} V(\mathbf{r})\right|^{2}=\frac{m^{2}}{4 \pi^{2} \hbar^{4}}\left[4 \pi \int_{o}^{\infty} r^{2} d r F \delta(r-a)\right]^{2} \\
& =\frac{m^{2}}{4 \pi^{2} \hbar^{4}}\left(4 \pi a^{2} F\right)^{2}=\frac{4 m^{2} a^{4} F^{2}}{\hbar^{4}}
\end{aligned}
$$

In the limit of small F, the previous computation yields $d \sigma / d \Omega=4 m^{2} F^{2} a^{4} / \hbar^{4}$, so they match.

