Physics 741 — Graduate Quantum Mechanics 1
Solutions to Chapter 14

6. [25] A particle of mass m scatters from a potential V' ()= F5(r—a), so that the

potential exists only at the surface of a thin sphere of radius a.
(a) [4] What equation must the radial wave functions R, (r) satisfy? Solve this

equation in the regions r <a and r > a.

The radial wave functions must satisfy
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Away from the point » = a, the problem is simply that of a free particle, and the solution was
worked out in class. The answer is spherical Bessel functions, and take the form

v (kr)—6n,(kr) r<a,
Ri(r)= {aj, (kr)—pn, (kr) r>a.

The constants will generally be different in the different regions.

(b) [6] Apply appropriate boundary at r = 0. Deduce appropriate boundary conditions
atr=a.

We want the radial function to be well-behaved at » = 0, which implies we only want the
well-behaved ji(r). Hence we demand 6 =0. At the boundary » = a, we must take our radial
Schrédinger equation and integrate it across the boundary. We first multiply both sides by r,
then we have
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Since the first derivative has a finite discontinuity, it follows that the wave function will be
continuous at the boundary. This yields two boundary conditions on the wave function:

aj (ka)_ﬂnl (ka) =VJ (ka)a

a [rjl (kr)]’r:a —ﬂ[rn, (kr)]’r:a = 2::—2Fa7/j, (ka) + )/[rjl (kr)]'r:a
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Our goal, ultimately, will be to eliminate y from these equations and deduce the ratio of Sto c.



(c) [8] Assume now that ka < 1, so that the scattering will be dominated by the /=0
term. Find a formula for the phase shift 5,. Find the differential cross-section.

Check that your formula agrees with the formula found in section C for the hard
sphere in the case /' — «.

We substitute in the explicit form for / = 0, namely j, (x)=sinx/x and

ny(x)=—cosx/x. Then our two boundary conditions become
asin(ka)/(ka)Jrﬂcos(ka)/(ka) = }/sin(ka)/(ka),
a[sin(kr)fk] _+pleos(kr)/k] = 2’;2]: aysin(ka)/(ka)+y[sin(kr)/k] .

Clear the fractions from the first of these and work out the derivatives in the second.

asin(ka)+ Bcos(ka)=ysin(ka),

a cos(ka)— Bsin(ka) = 2mk

'k

ysin(ka)+y cos(ka).

Cross multiply these and then cancel the common factor of y.
[a cos(ka)— ﬂsin(ka)] sin (ka) = [2mF sin(ka)/h’k + cos(ka)][a sin (ka )+ ,Bcos(ka)] ,
B [—hzk sin’ (ka ) —h*k cos® (ka)—2mF sin (ka)cos (ka)] =a2mFsin® (ka),
B —2mF sin® (ka)
a  Wk+2mF sin(ka)cos(ka)

We hence have the phase shift

ans _B_ —2mF sin’ (ka) _ 2mFk’a’>  2mFa’k
" a Wk+2mFsin(ka)cos(ka) Wk+2mFka H +2mFa’

where we used ka <1 to approximate sinka = ka and coska =1. It’s then easy to see that the
numerator is much smaller than the denominator, so we can also approximate sin J, = tand, , and

hence the differential cross-section is
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In the limit of infinite potential, we ignore the first term in the denominator compared to the
second, so do/dQ = a’, the same as we found before.



(d) [7] Redo the problem using the first Born approximation. Again assume ka <1
(effectively, this means Ka = 0). Check that the resulting differential cross-section in
this case is identical with that found above in the limit ' — 0.

In the first Born approximation, the differential cross-section is given by

do m> " 2
a0 e |:47Z'L rzdrFé(r—a)}
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In the limit of small F, the previous computation yields do/dQ = 4m’F’a* / 7", so they match.



