
Physics 741 – Graduate Quantum Mechanics 1 
Solutions to Chapter 14 

 
4. [10] In class we found the scattering cross section for Coulomb scattering by a charge q' 

from a point charge q located at the origin, with potential ( ) eV k qq r′=r .  We needed 

the Fourier transform, which turned out to be ( )3 24i
ed V e k qqπ− ⋅ ′=∫ K rr r K . 

(a) [3] Place the source q not at the origin, but at =r a .  What is the potential now?  
What is the Fourier transform now?  Hint:  Don’t actually do the work, just shift 
your integration variable, and use previous work. Convince yourself (and me) that 
the differential cross-section is unchanged. 

 
 We need to replace r in the denominator of the potential with −r a .  We then simply 
shift our integration variable to → +r r a .  We find 
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The only change is a phase, but since you end up squaring the amplitude, it doesn’t change 
things at all. 
 

(b) [4] Suppose we replaced q with a series of charges qi located at several locations ia .  
What would be the Fourier transform now?  What if, instead of a series of discrete 
charges qi, we had a charge distribution ( )ρ r  spread around in space? 

 
 The potential from a series of charges is obviously 
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The Fourier transform of this, as a consequence, is clearly just the sum from each of the separate 
charges 
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For a charge distribution, the obvious generalization is 
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(c) [3] Show that the differential cross-section for a charge q' scattering off of a charge 
distribution ( )ρ r  is given by 
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 where ′= −K k k , the change in the wave number.  
 
 We simply substitute our previous result into the formula for the cross-section, which 
yields 

( )
( )

( )
2 2 2 22 2

3 3
22 4 2 4 2

4 4 .
4

i ie ek q k qd d e d e
d

π µσ µ ρ ρ
π

− ⋅ − ⋅′ ′
= =

Ω ∫ ∫K r K rr r r r
K K



 

 
 
5. [15] An electron of mass m scatters from a neutral hydrogen atom in the ground state 

located at the origin.  
(a) [7] What is the charge distribution for a neutral hydrogen atom?  Don’t forget the 

nucleus!  What is the Fourier transform of the charge? 
 
 The nucleus has charge e and is locate at the origin, so we can model it with a charge 
distribution ( ) ( )3eρ δ=r r .  The electron is spread out in a wave function given by 

( ) ( ) 2
eρ ψ= −r r .  Using the explicit form of the wave function for the ground state, we 

therefore have 
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We will have to keep our e’s straight.  When computing the Fourier transform, the charge 
distribution is spherically symmetric, so there’s no harm in assuming K is in the z-direction.  The 
Fourier transform of this is 
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Obviously, this vanishes if K = 0. 



 
(b) [8] Find the differential and total cross section in this case. 

  
 We simply use the formula from problem 4.  We find 
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where we have used the identity ( )2 22 1 cosk θ= −K  to simplify our expression, as well 

as 2 2
0 ea mk e=  .  We now have a single nasty integral to do, which is why God invented Maple. 

> assume(A>0);integrate((4+A-A*x)^2/(2+A-A*x)^4,x=-1..1); 
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Note that the final factor goes to one 
in the low energy limit, so we have a 
finite cross section 2

04 aπ , which then 
decreases as we increase our energy.  
 
 
 


