
Physics 741 – Graduate Quantum Mechanics 1 
Solutions to Chapter 12 

 
8. [20] A particle of mass m lies in a two dimensional harmonic oscillator plus a 

perturbation ( )2 2 2 2 2 31
22 2x y yH P m P m m X Y X Pω γ= + + + + , where γ is very small. 

(a) [1] What are the eigenstates and eigenenergies of this in the limit 0γ = ? 
 
 In this limit, we have simply the sum of two harmonic oscillators, with eigenstates ij , 

where i and j are non-negative integers, and energy ( )1ij i jε ω= + + . 
 

(b) [9] Find the ground state and energy to first order and second order in γ 
respectively. 

 
 The ground state 00  is non-degenerate.  If we denote the annihilation operators in the x- 
and y-direction as xa  and ya  respectively, then we find  

 
( ) ( ) ( )

( )( ) ( )

3 1
2 2 23 2† † †

2 2
†

00 00 11
2 2 4

01 2 21 3 11 6 31 .
4 4

x x y y x x

x x

m iW i a a a a a a
m m

i ia a
m m

ω γγ
ω ω

γ γ
ω ω

   = + − = +   
   

= + + = +

  

 

 

It is evident there will be no first-order contribution to the energy.  To second order, the 
contribution will be 
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The state vector is given by 
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(c) [10] Find the first excited states and energy to zeroth and first order in γ  
respectively. 

 
 The first excited states are 01  and 10 , which are degenerate.  As a consequence, we 
must use degenerate perturbation theory.  We see that 
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We now can quickly see that the W  matrix is 
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The last matrix is well-known; it is  yσ , one of the Pauli matrices.  Its eigenvalues are 1± , and 
its normalized eigenvectors are 
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This tells us which combinations to take.  If we define the states 

 ( )1
2

10 01i± = ±  

then these states will be the first excited eigenstates, to leading order, and will have energies 
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