Solutions to Chapter 12

8. [20] A particle of mass \boldsymbol{m} lies in a two dimensional harmonic oscillator plus a perturbation $H=P_{x}^{2} / 2 m+P_{y}^{2} / 2 m+\frac{1}{2} m \omega^{2}\left(X^{2}+Y^{2}\right)+\gamma X^{3} P_{y}$, where γ is very small.
(a) [1] What are the eigenstates and eigenenergies of this in the limit $\gamma=0$?

In this limit, we have simply the sum of two harmonic oscillators, with eigenstates $|i j\rangle$, where i and j are non-negative integers, and energy $\varepsilon_{i j}=\hbar \omega(i+j+1)$.
(b) [9] Find the ground state and energy to first order and second order in γ respectively.

The ground state $|00\rangle$ is non-degenerate. If we denote the annihilation operators in the x and y-direction as a_{x} and a_{y} respectively, then we find

$$
\begin{aligned}
W|00\rangle & =\gamma\left(\frac{\hbar}{2 m \omega}\right)^{\frac{3}{2}} i\left(\frac{\hbar m \omega}{2}\right)^{\frac{1}{2}}\left(a_{x}+a_{x}^{\dagger}\right)^{3}\left(a_{y}^{\dagger}-a_{y}\right)|00\rangle=\frac{i \gamma \hbar^{2}}{4 m \omega}\left(a_{x}+a_{x}^{\dagger}\right)^{2}|11\rangle \\
& =\frac{i \gamma \hbar^{2}}{4 m \omega}\left(a_{x}+a_{x}^{\dagger}\right)(|01\rangle+\sqrt{2}|21\rangle)=\frac{i \gamma \hbar^{2}}{4 m \omega}(3|11\rangle+\sqrt{6}|31\rangle) .
\end{aligned}
$$

It is evident there will be no first-order contribution to the energy. To second order, the contribution will be

$$
\begin{aligned}
E_{00} & =\varepsilon_{00}+\sum_{i j} \frac{|\langle i j| W| 00\rangle\left.\right|^{2}}{\varepsilon_{00}-\varepsilon_{i j}}=\hbar \omega+\frac{|\langle 11| W| 00\rangle\left.\right|^{2}}{-2 \hbar \omega}+\frac{|\langle 31| W| 00\rangle\left.\right|^{2}}{-4 \hbar \omega}=\hbar \omega-\left|\frac{\left.i \gamma \hbar^{2}\right|^{2}}{4 m \omega}\right|^{\hbar \omega}\left(\frac{3^{2}}{2}+\frac{6}{4}\right) \\
& =\hbar \omega-\frac{3 \gamma^{2} \hbar^{3}}{8 m^{2} \omega^{3}}
\end{aligned}
$$

The state vector is given by

$$
\begin{aligned}
\left|\psi_{00}\right\rangle & =|00\rangle+\sum_{i j}|i j\rangle \frac{\langle i j| W|00\rangle}{\varepsilon_{00}-\varepsilon_{i j}}=\hbar \omega+|11\rangle \frac{\langle 11| W|00\rangle}{-2 \hbar \omega}+|31\rangle \frac{\langle 31| W|00\rangle}{-4 \hbar \omega} \\
& =|00\rangle-\frac{i \gamma \hbar^{2}}{4 m \omega} \frac{1}{\hbar \omega}\left(\frac{3}{2}|11\rangle+\frac{\sqrt{6}}{4}|31\rangle\right)=|00\rangle-\frac{i \gamma \hbar}{16 m \omega^{2}}(6|11\rangle+\sqrt{6}|31\rangle) .
\end{aligned}
$$

(c) [10] Find the first excited states and energy to zeroth and first order in γ respectively.

The first excited states are $|01\rangle$ and $|10\rangle$, which are degenerate. As a consequence, we must use degenerate perturbation theory. We see that

$$
\begin{aligned}
W|10\rangle & =\frac{i \gamma \hbar^{2}}{4 m \omega}\left(a_{x}+a_{x}^{\dagger}\right)^{3}\left(a_{y}^{\dagger}-a_{y}\right)|10\rangle=\frac{i \gamma \hbar^{2}}{4 m \omega}\left(a_{x}+a_{x}^{\dagger}\right)^{3}|11\rangle=\frac{i \gamma \hbar^{2}}{4 m \omega}\left(a_{x}+a_{x}^{\dagger}\right)^{2}(|01\rangle+\sqrt{2}|21\rangle) \\
& =\frac{i \gamma \hbar^{2}}{4 m \omega}\left(a_{x}+a_{x}^{\dagger}\right)(3|11\rangle+\sqrt{6}|31\rangle)=\frac{i \gamma \hbar^{2}}{4 m \omega}(3|01\rangle+6 \sqrt{2}|21\rangle+\sqrt{24}|41\rangle), \\
W|01\rangle & =\frac{i \gamma \hbar^{2}}{4 m \omega}\left(a_{x}+a_{x}^{\dagger}\right)^{3}\left(a_{y}^{\dagger}-a_{y}\right)|01\rangle=\frac{i \gamma \hbar^{2}}{4 m \omega}\left(a_{x}+a_{x}^{\dagger}\right)^{2}\left(a_{y}^{\dagger}-a_{y}\right)|11\rangle \\
& =\frac{i \gamma \hbar^{2}}{4 m \omega}\left(a_{x}+a_{x}^{\dagger}\right)\left(a_{y}^{\dagger}-a_{y}\right)(|01\rangle+\sqrt{2}|21\rangle)=\frac{i \gamma \hbar^{2}}{4 m \omega}\left(a_{y}^{\dagger}-a_{y}\right)(3|11\rangle+\sqrt{6}|31\rangle) \\
& =\frac{i \gamma \hbar^{2}}{4 m \omega}(3 \sqrt{2}|12\rangle+2 \sqrt{3}|32\rangle-3|10\rangle-\sqrt{6}|30\rangle)
\end{aligned}
$$

We now can quickly see that the \tilde{W} matrix is

$$
\tilde{W}=\left(\begin{array}{ll}
\langle 10| W|10\rangle & \langle 10| W|01\rangle \\
\langle 01| W|10\rangle & \langle 01| W|01\rangle
\end{array}\right)=\frac{3 \gamma \hbar^{2}}{4 m \omega}\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right)
$$

The last matrix is well-known; it is σ_{y}, one of the Pauli matrices. Its eigenvalues are ± 1, and its normalized eigenvectors are

This tells us which combinations to take. If we define the states
then these states will be the first excited eigenstates, to leading order, and will have energies

$$
E_{ \pm}=\varepsilon+w_{ \pm}=2 \hbar \omega \pm \frac{3 \gamma \hbar^{2}}{4 m \omega} .
$$

