Physics 742 - Graduate Quantum Mechanics 2

Solutions to Chapter 12

3. [15] Joe inn't getting any smarter. He is attempting to find the ground state energy of an infinite square well with allowed region $-a<x<a$ using the trial wave function (in the allowed region) $\psi(x)=1-x^{2} / a^{2}+B\left(1-x^{4} / a^{4}\right)$, where \boldsymbol{B} is a variational parameter.

Estimate the ground state energy, and compare to the exact value.

Since there is no potential, we need to calculate only the normalization and kinetic terms, which are

$$
\begin{aligned}
\langle\psi \mid \psi\rangle & =\int_{-a}^{a}\left[1-x^{2} / a^{2}+B\left(1-x^{4} / a^{4}\right)\right]^{2} \\
= & 2 \int_{0}^{a}\left[1-2 x^{2} / a^{2}+x^{4} / a^{4}+2 B\left(1-x^{2} / a^{2}-x^{4} / a^{4}+x^{6} / a^{6}\right)+B^{2}\left(1-2 x^{4} / a^{4}+x^{8} / a^{8}\right)\right] d x \\
= & 2 a\left[1-\frac{2}{3}+\frac{1}{5}+2 B\left(1-\frac{1}{3}-\frac{1}{5}+\frac{1}{7}\right)+B^{2}\left(1-\frac{2}{5}+\frac{1}{9}\right)\right]=a\left(\frac{16}{15}+\frac{256}{105} B+\frac{64}{45} B^{2}\right), \\
\langle\psi| P^{2}|\psi\rangle & =\| P|\psi\rangle \|^{2}=\int_{-a}^{a}\left|-i \hbar \frac{d}{d x}\left[1-x^{2} / a^{2}+B\left(1-x^{4} / a^{4}\right)\right]\right|^{2} d x=2 \hbar^{2} \int_{0}^{a}\left(2 x / a^{2}+4 B x^{3} / a^{4}\right) d x \\
& =2 \hbar^{2} \int_{0}^{a}\left(4 x^{2} / a^{4}+16 B x^{4} / a^{6}+16 B^{2} x^{6} / a^{8}\right) d x=8 \hbar^{2}\left(\frac{1}{3}+\frac{4}{5} B+\frac{4}{7} B^{2}\right) / a .
\end{aligned}
$$

The expectation value of the energy, as a function of B, is therefore

$$
E(B)=\frac{\langle\psi| H|\psi\rangle}{\langle\psi \mid \psi\rangle}=\frac{\hbar^{2}\langle\psi| P^{2}|\psi\rangle}{2 m\langle\psi \mid \psi\rangle}=\frac{8 \hbar^{2}}{2 m a^{2} 16} \cdot \frac{\frac{1}{3}+\frac{4}{5} B+\frac{4}{7} B^{2}}{\frac{1}{15}+\frac{16}{105} B+\frac{4}{45} B^{2}}=\frac{3 \hbar^{2}}{4 m a^{2}} \cdot \frac{60 B^{2}+84 B+35}{28 B^{2}+48 B+21} .
$$

To minimize this, we set the derivative equal to zero, which yields

$$
\begin{aligned}
& 0=\frac{\left(28 B^{2}+48 B+21\right)(120 B+84)-\left(60 B^{2}+84 B+35\right)(56 B+48)}{\left(28 B^{2}+48 B+21\right)^{2}}, \\
& 0=528 B^{2}+560 B+84=16\left(33 B^{2}+35 B+\frac{21}{4}\right) \\
& B=\frac{-35 \pm \sqrt{35^{2}-4 \cdot 33 \cdot \frac{21}{4}}}{2 \cdot 33}=\frac{-35 \pm \sqrt{532}}{66}=-0.1808 \text { or }-0.8798 .
\end{aligned}
$$

We now substitute each of these into the expression for $E(B)$, to yield

$$
\begin{aligned}
& E(-0.1808)=\frac{3 \hbar^{2}}{4 m a^{2}} \cdot \frac{60(-0.1808)^{2}+84(-0.1808)+35}{28(-0.1808)^{2}+48(-0.1808)+21}=\frac{1.233719 \hbar^{2}}{m a^{2}}, \\
& E(-0.8798)=\frac{3 \hbar^{2}}{4 m a^{2}} \cdot \frac{60(-0.8798)^{2}+84(-0.8798)+35}{28(-0.8798)^{2}+48(-0.8798)+21}=\frac{12.76628 \hbar^{2}}{m a^{2}} .
\end{aligned}
$$

We are trying to minimize the energy, which clearly corresponds to the first case, not the second (which is a maximum).

Since the well has width $2 a$, the exact energy is

$$
E=\frac{\pi^{2} \hbar^{2}}{2 m(2 a)^{2}}=\frac{\pi^{2} \hbar^{2}}{8 m a^{2}} \approx \frac{1.233701 \hbar^{2}}{m a^{2}}
$$

or a difference of about 15 parts per million. Not bad, for a simple polynomial estimate!
4. [10] A particle lies in one dimension with Hamiltonian $H=P^{2} / 2 m+F|X|$. Using the WKB method, our goal is to find the eigenenergies of this Hamiltonian.
(a) [2] For energy E, find the classical turning points a and b.

We first find the classical turning points, which are solutions to $E=F|x|$. The solutions are $|x|=E / F, x= \pm E / F$, so $a=-E / F$ and $b=E / F$.

(b)[4] Perform the integral required by the WKB method.

The WKB formula for the energy is

$$
\begin{aligned}
\pi \hbar\left(n+\frac{1}{2}\right) & =\int_{a}^{b} \sqrt{2 m[E-V(x)]} d x=\int_{-E / F}^{E / F} \sqrt{2 m(E-F|x|)} d x \\
& =2 \int_{0}^{E / F} \sqrt{2 m(E-F x)} d x=-\left.\frac{2}{2 m F} \cdot \frac{2}{3}[2 m(E-F x)]^{\frac{3}{2}}\right|_{0} ^{E / F}=\frac{2(2 m E)^{3 / 2}}{3 m F} .
\end{aligned}
$$

(c) [4] Solve the resulting equation for $\boldsymbol{E}_{\boldsymbol{n}}$

Solving for E, we have

$$
\begin{aligned}
(2 m E)^{3 / 2} & =\frac{3}{2} \pi \hbar\left(n+\frac{1}{2}\right) m F, \\
E_{n} & =\frac{\left[\frac{3}{2} \pi \hbar\left(n+\frac{1}{2}\right) m F\right]^{2 / 3}}{2 m}=\left[\frac{3 \pi \hbar\left(n+\frac{1}{2}\right) F}{4 \sqrt{2 m}}\right]^{2 / 3} .
\end{aligned}
$$

5. [10] We never completed a discussion of how to normalize the WKB wave function, given by eq. (12.27b).
(a) [3] Treating the average value of $\sin ^{2} \rightarrow \frac{1}{2}$, and including only the wave function in the classically allowed region $a<x<b$, write an integral equation for N.

In general, we must demand that the integral of the wave function squared equal one. This wave function is only appropriate in the classically allowed region, so

$$
\begin{gathered}
1=\int_{a}^{b}|\psi(x)|^{2} d x=\int_{a}^{b} \frac{N^{2} d x}{\sqrt{E-V(x)}} \sin ^{2}\left[\frac{1}{\hbar} \int_{a}^{x} d x^{\prime} \sqrt{2 m[E-V(x)]}+\gamma\right] \approx \frac{N^{2}}{2} \int_{a}^{b} \frac{d x}{\sqrt{E-V(x)}}, \\
N=\left[\frac{1}{2} \int_{a}^{b} d x / \sqrt{E-V(x)}\right]^{-1 / 2} .
\end{gathered}
$$

(b) [2] We are now going to find a simple formula for N in terms of the classical period T, the time it takes for the particle to get from point \boldsymbol{a} to \boldsymbol{b} and back again. As a first step, find an expression for the velocity $v(x)=d x / d t$ as a function of position. This is purely a classical problem!

Wwe use the classical formula for the total energy, which is kinetic energy plus potential energy, $E=\frac{1}{2} m v^{2}+V(x)$. Solving for the speed v, we have

$$
v=\sqrt{2[E-V(x)] / m}
$$

(c) [3] Use the equation in part (b) to get an integral expression for the time it takes to go from a to b. Double it to get an expression for T.

The time for the period is

$$
T=2 \int_{x=a}^{x=b} d t=2 \int_{x=a}^{x=b} \frac{d x}{d x / d t}=\int_{a}^{b} \frac{2 d x}{\sqrt{2[E-V(x)] / m}}=\sqrt{2 m} \int_{a}^{b} d x / \sqrt{E-V(x)} .
$$

(d) [2] Relate your answers in parts (a) and (c) to get a NON-integral relationship between the normalization N and the classical period T.

It is obvious that the integrals in the two parts are very similar. Solving for the integral in (c), we see that

$$
\begin{gathered}
\int_{a}^{b} d x / \sqrt{E-V(x)}=\frac{T}{\sqrt{2 m}} \\
N=\left(\frac{1}{2} \frac{T}{\sqrt{2 m}}\right)^{-1 / 2}=\sqrt{\frac{2 \sqrt{2 m}}{T}} .
\end{gathered}
$$

