Physics 741 - Graduate Quantum Mechanics 1

Solutions to Chapter 11

5. [20] A general Hermitian operator in a two-dimensional system, such as the state vector for the spin of a spin- $\mathbf{1 / 2}$ particle, takes the form $\rho=\frac{1}{2}(a 1+\mathbf{r} \cdot \boldsymbol{\sigma})$, where $\boldsymbol{\sigma}$ are the Pauli matrices, 1 is the unit matrix, and r is an arbitrary three-dimensional vector.
(a) [4] Find the eigenvalues of this matrix in general.

Writing $\mathbf{r}=(x, y, z)$, we see that

$$
\rho=\frac{1}{2}\left(a \mathbf{1}+x \sigma_{x}+y \sigma_{y}+z \sigma_{z}\right)=\frac{1}{2}\left(\begin{array}{ll}
a+z & x-i y \\
x+i y & a-z
\end{array}\right)
$$

Ignoring the overall factor of $1 / 2$, we can find the eigenvalues of the remaining matrix λ by demanding

$$
\begin{aligned}
& 0=\operatorname{det}\left(\begin{array}{cc}
a+z-\lambda & x-i y \\
x+i y & a-z-\lambda
\end{array}\right)=(a-\lambda)^{2}-z^{2}-(x-i y)(x+i y)=(\lambda-a)^{2}-x^{2}-y^{2}-z^{2}, \\
& \lambda-a= \pm \sqrt{x^{2}+y^{2}+z^{2}}= \pm|\mathbf{r}|
\end{aligned}
$$

Putting back in the factor of two, we have $\lambda=\frac{1}{2}(a \pm|\mathbf{r}|)$.

(b) [4] What restrictions can be placed on a and r if this represents a state operator?

State operators have two restrictions on their eigenvalues: they must have eigenvalues that add to one, and they must be positive. In other words, we must have

$$
\begin{aligned}
& 1=\frac{1}{2}(a-|\mathbf{r}|)+\frac{1}{2}(a+|\mathbf{r}|)=a \\
& 0 \leq \frac{1}{2}(a \pm|\mathbf{r}|)
\end{aligned}
$$

The first restriction implies $a=1$. For the second, we have two constraints, but only the minus one yields any information, for which we see that $0 \leq a-|\mathbf{r}|$, which implies $|\mathbf{r}| \leq 1$. So $a=1$ and $|\mathbf{r}| \leq 1$.
(c) [3] Under what constraints will this density matrix be a pure state?

A pure state has eigenvalues 0 and 1 only, so we must have

$$
\lambda=\frac{1}{2}(a \pm|\mathbf{r}|)=\frac{1}{2} \pm \frac{1}{2}|\mathbf{r}|=0 \text { or } 1
$$

Obviously, this will happen if $|\mathbf{r}|=1$.
(d) [4] Show that all four components of a and r are determined if we know every component of the expectation value of the spin $\langle\mathrm{S}\rangle$.

We already automatically know that $a=1$. As for the spin expectation values,

$$
\begin{aligned}
\left\langle S_{i}\right\rangle & =\frac{1}{2} \hbar \operatorname{Tr}\left(\rho \sigma_{i}\right)=\frac{1}{4} \hbar \operatorname{Tr}\left[(1+\mathbf{r} \cdot \boldsymbol{\sigma}) \sigma_{i}\right]=\frac{1}{4} \hbar \operatorname{Tr}\left(\sigma_{i}+\sum_{j} r_{j} \sigma_{j} \sigma_{i}\right)=\frac{1}{4} \hbar \operatorname{Tr}\left[\sigma_{i}+\sum_{j} r_{j} \sigma_{j} \sigma_{i}\right] \\
& =\frac{1}{4} \hbar\left[\operatorname{Tr}\left(\sigma_{i}\right)+\sum_{j} r_{j} \operatorname{Tr}\left(\mathbf{1} \delta_{i j}+\sum_{k} i \varepsilon_{j i k} \sigma_{k}\right)\right]=\frac{1}{4} \hbar\left[0+\sum_{j} r_{j}\left(\operatorname{Tr}(\mathbf{1}) \delta_{i j}+\sum_{k} i \varepsilon_{j i k} \operatorname{Tr}\left(\sigma_{k}\right)\right)\right] \\
& =\frac{1}{4} \hbar\left[\sum_{j} r_{j} \delta_{i j} 2+0\right]=\frac{1}{2} \hbar r_{i} .
\end{aligned}
$$

This can easily be summarized as $\langle\mathbf{S}\rangle=\frac{1}{2} \hbar \mathbf{r}$, so we can get all three components of \mathbf{r} from $\langle\mathbf{S}\rangle$.
(e) [5] A particle with this density matrix is under the influence of a Hamiltonian $H=\frac{1}{2} \hbar \omega \sigma_{z}$. Find a formula for $d \mathbf{r} / d t$ and $d a / d t$, technically four equations, one of which will be trivial.

The state operator (or density matrix) evolves according to

$$
\begin{aligned}
\frac{d \rho}{d t} & =\frac{1}{i \hbar}[H, \rho], \\
\frac{1}{2} \frac{d}{d t}\left(\begin{array}{cc}
a+z & x-i y \\
x+i y & a-z
\end{array}\right) & =\frac{1}{i \hbar} \frac{\hbar \omega}{2} \frac{1}{2}\left\{\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\left(\begin{array}{cc}
a+z & x-i y \\
x+i y & a-z
\end{array}\right)-\left(\begin{array}{cc}
a+z & x-i y \\
x+i y & a-z
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\right\}, \\
\frac{d}{d t}\left(\begin{array}{cc}
a+z & x-i y \\
x+i y & a-z
\end{array}\right) & =\frac{\omega}{2 i}\left\{\left(\begin{array}{cc}
a+z & x-i y \\
-x-i y & -a+z
\end{array}\right)-\left(\begin{array}{cc}
a+z & -x+i y \\
x+i y & -a+z
\end{array}\right)\right\}=\omega\left(\begin{array}{cc}
0 & -i x-y \\
i x-y & 0
\end{array}\right) .
\end{aligned}
$$

Equating component by component, we get four simultaneous equations:

$$
\frac{d}{d t} a+\frac{d}{d t} z=0, \quad \frac{d}{d t} a-\frac{d}{d t} z=0, \quad \frac{d}{d t} x-i \frac{d}{d t} y=-i \omega x-\omega y, \quad \frac{d}{d t} x+i \frac{d}{d t} y=i \omega x-\omega y .
$$

We now need to solve these equations for each of the four time derivatives. If we add and subtract the first two, we quickly determine that a and z are unchanging over time. If we add and subtract the last two, we geta $2 d x / d t=-2 \omega y$ and $2 i d y / d t=2 i \omega x$. Fortunately, these turn into real equations, and our final answer is

$$
\frac{d}{d t} a=\frac{d}{d t} z=0, \quad \frac{d}{d t} x=-\omega y \quad \text { and } \quad \frac{d}{d t} y=\omega x
$$

This can be more easily summarized as $\frac{d}{d t} a=0$ and $\frac{d}{d t} \mathbf{r}=-\omega \hat{\mathbf{z}} \times \mathbf{r}$ if we prefer.

