Physics 741 — Graduate Quantum Mechanics 1
Solutions to Chapter 11

5. [20] A general Hermitian operator in a two-dimensional system, such as the state vector
for the spin of a spin-1/2 particle, takes the form p = %(al +r- c) , where ¢ are the Pauli

matrices, 1 is the unit matrix, and r is an arbitrary three-dimensional vector.
(a) [4] Find the eigenvalues of this matrix in general.

Writing r =(x, y,z), we see that
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Ignoring the overall factor of /2, we can find the eigenvalues of the remaining matrix A by
demanding
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Putting back in the factor of two, we have A = %(a + |r|) .

(b) [4] What restrictions can be placed on a and r if this represents a state operator?

State operators have two restrictions on their eigenvalues: they must have eigenvalues
that add to one, and they must be positive. In other words, we must have

t=4(a=rl)+3(a+[r])=a,

0<L(at|r]).
The first restriction implies a = 1. For the second, we have two constraints, but only the minus
one yields any information, for which we see that 0 < a — |r , which implies |r| <1. Soa=1and

|r|£1.

(¢) [3] Under what constraints will this density matrix be a pure state?

A pure state has eigenvalues 0 and 1 only, so we must have
A =%(a i|r|) :%i%|r| =0orl

Obviously, this will happen if [r|=1.



(d) [4] Show that all four components of « and r are determined if we know every
component of the expectation value of the spin <S> .

We already automatically know that @ = 1. As for the spin expectation values,
<S > 1nTr(po,)=1 hTr[ (I+r-6)o, ] = %hTI‘(O‘i + erjajal.) =%hTr[0i +Z ,rjajo;}
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This can easily be summarized as <S> =1 hir, so we can get all three components of r from <S> .

(e) [5] A particle with this density matrix is under the influence of a Hamiltonian

H =1hoo.. Find a formula for dr/d:t and da/dt, technically four equations, one of
which will be trivial.

The state operator (or density matrix) evolves according to
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Equating component by component, we get four simultaneous equations:
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—a+—z=0, —a-—z=0, —x—-i—y=—iox—-wy, —x+i—y=iwx—ay.
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We now need to solve these equations for each of the four time derivatives. If we add and
subtract the first two, we quickly determine that a and z are unchanging over time. If we add and
subtract the last two, we geta2dx/dt = 2wy and 2idy/dt = 2iox . Fortunately, these turn into
real equations, and our final answer is
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This can be more easily summarized as dia =0 and dir =—wz xr if we prefer.
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