
Physics 741 – Graduate Quantum Mechanics 1 
Solutions to Chapter 11 

 
5. [20] A general Hermitian operator in a two-dimensional system, such as the state vector 

for the spin of a spin-1/2 particle, takes the form ( )1
2 aρ = + ⋅1 r σ , where σ  are the Pauli 

matrices, 1 is the unit matrix, and r is an arbitrary three-dimensional vector. 
(a) [4] Find the eigenvalues of this matrix in general. 

 
 Writing ( ), ,x y z=r , we see that 
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Ignoring the overall factor of ½, we can find the eigenvalues of the remaining matrix λ by 
demanding 
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Putting back in the factor of two, we have ( )1
2 aλ = ± r . 

 
(b) [4] What restrictions can be placed on a and r if this represents a state operator? 

 
 State operators have two restrictions on their eigenvalues: they must have eigenvalues 
that add to one, and they must be positive.  In other words, we must have 
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The first restriction implies a = 1.  For the second, we have two constraints, but only the minus 
one yields any information, for which we see that 0 a≤ − r , which implies 1≤r .  So a = 1 and 

1≤r . 
 

(c) [3] Under what constraints will this density matrix be a pure state? 
 
 A pure state has eigenvalues 0 and 1 only, so we must have  

 ( )1 1 1
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Obviously, this will happen if 1=r . 
 



(d) [4] Show that all four components of a and r are determined if we know every 
component of the expectation value of the spin S . 

 
 We already automatically know that a = 1.  As for the spin expectation values, 
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This can easily be summarized as 1
2=S r , so we can get all three components of r from S . 

 
(e) [5] A particle with this density matrix is under the influence of a Hamiltonian 

1
2 zH ωσ=  .  Find a formula for d dtr  and da dt , technically four equations, one of 

which will be trivial. 
 
 The state operator (or density matrix) evolves according to 
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Equating component by component, we get four simultaneous equations: 
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We now need to solve these equations for each of the four time derivatives.  If we add and 
subtract the first two, we quickly determine that a and z are unchanging over time.  If we add and 
subtract the last two, we geta 2 2dx dt yω= −  and 2 2i dy dt i xω= .  Fortunately, these turn into 
real equations, and our final answer is 
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This can be more easily summarized as 0d a
dt

=  and ˆd
dt

ω= − ×r z r  if we prefer. 


