Physics 741 - Graduate Quantum Mechanics 1

Solutions to Chapter 11

4. [15] An electron is in the + state when measured in the direction $S_{\theta}=S_{z} \cos \theta+S_{x} \sin \theta$, so that $S_{\theta}\left|+_{\theta}\right\rangle=+\frac{1}{2} \hbar\left|+{ }_{\theta}\right\rangle$. However, the angle θ is uncertain. In each part, it is probably a good idea to check at each step that the trace comes out correctly.
(a) [3] Suppose the angle is $\theta= \pm \frac{1}{3} \pi$, with equal probability for each angle. What is the state operator in the conventional $\left| \pm_{z}\right\rangle$ basis?

We have, from a variety of sources, the states in terms of this basis, which is

$$
\left|++_{\theta}\right\rangle=\cos \left(\frac{1}{2} \theta\right)|+\rangle+\sin \left(\frac{1}{2} \theta\right)|-\rangle
$$

The state vector is then simply taken by averaging the results for the two angles, so

$$
\left.\left.\begin{array}{rl}
\rho & =\frac{1}{2} \sum_{\theta= \pm \frac{\pi}{3}}\left|+{ }_{\theta}\right\rangle\left\langle+{ }_{\theta}\right|=\frac{1}{2}\left[\binom{\cos \frac{\pi}{6}}{\sin \frac{\pi}{6}}\left(\begin{array}{ll}
\cos \frac{\pi}{6} & \sin \frac{\pi}{6}
\end{array}\right)+\binom{\cos \frac{\pi}{6}}{-\sin \frac{\pi}{6}}\left(\cos \frac{\pi}{6}\right.\right. \\
-\sin \frac{\pi}{6}
\end{array}\right)\right] .
$$

The result has trace one, so it's probably right.
(b) [4] Suppose the angle θ is randomly distributed in the range $-\frac{1}{2} \pi<\theta<\frac{1}{2} \pi$, with all angles equally likely. What is the state operator in the conventional $\left| \pm_{z}\right\rangle$ basis?

Instead of adding two angles, we need to integrate over all angles, and divide by the range of angles, which is π, so we have

$$
\begin{aligned}
\rho & =\frac{1}{\pi} \int_{-\frac{1}{2} \pi}^{\frac{1}{2} \pi}\left|+{ }_{\theta}\right\rangle\left\langle+{ }_{\theta}\right| d \theta=\frac{1}{\pi} \int_{-\frac{1}{2} \pi}^{\frac{1}{2} \pi}\binom{\cos \left(\frac{1}{2} \theta\right)}{\sin \left(\frac{1}{2} \theta\right)}\left(\cos \left(\frac{1}{2} \theta\right) \sin \left(\frac{1}{2} \theta\right)\right) d \theta \\
& =\frac{1}{\pi} \int_{-\frac{1}{2} \pi}^{\frac{1}{2} \pi}\left(\begin{array}{cc}
\cos ^{2}\left(\frac{1}{2} \theta\right) & \cos \left(\frac{1}{2} \theta\right) \sin \left(\frac{1}{2} \theta\right) \\
\cos \left(\frac{1}{2} \theta\right) \sin \left(\frac{1}{2} \theta\right) & \sin ^{2}\left(\frac{1}{2} \theta\right)
\end{array}\right) d \theta=\frac{1}{2 \pi} \int_{-\frac{1}{2} \pi}^{\frac{1}{2} \pi}\left(\begin{array}{cc}
1+\cos \theta & \sin \theta \\
\sin \theta & 1-\cos \theta
\end{array}\right) d \theta \\
& =\frac{1}{2 \pi}\left(\begin{array}{cc}
\theta+\sin \theta & -\cos \theta \\
-\cos \theta & \theta-\sin \theta
\end{array}\right)_{-\frac{\pi}{2}}^{\frac{\pi}{2}}=\frac{1}{2 \pi}\left[\left(\begin{array}{cc}
\frac{\pi}{2}+1 & 0 \\
0 & \frac{\pi}{2}-1
\end{array}\right)-\left(\begin{array}{cc}
-\frac{\pi}{2}-1 & 0 \\
0 & -\frac{\pi}{2}+1
\end{array}\right)\right]=\left(\begin{array}{cc}
\frac{1}{2}+\frac{1}{\pi} & 0 \\
0 & \frac{1}{2}-\frac{1}{\pi}
\end{array}\right) .
\end{aligned}
$$

Once again, the trace is one, so it's probably correct.
(c) [4] Suppose the angle θ is randomly distributed in the range $-\pi<\theta<\pi$, with all angles equally likely. What is the state operator in the conventional $\left| \pm_{z}\right\rangle$ basis?

This is identical to the previous part, except the range is twice as big and of course the limits of integration change, so we have

$$
\begin{aligned}
\rho & =\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left|+{ }_{\theta}\right\rangle\left\langle+{ }_{\theta}\right| d \theta=\cdots=\frac{1}{4 \pi} \int_{-\pi}^{\pi}\left(\begin{array}{cc}
1+\cos \theta & \sin \theta \\
\sin \theta & 1-\cos \theta
\end{array}\right) d \theta=\frac{1}{4 \pi}\left(\begin{array}{cc}
\theta+\sin \theta & -\cos \theta \\
-\cos \theta & \theta-\sin \theta
\end{array}\right)_{-\pi}^{\pi} \\
& =\frac{1}{4 \pi}\left[\left(\begin{array}{cc}
\pi & -1 \\
-1 & \pi
\end{array}\right)-\left(\begin{array}{cc}
-\pi & -1 \\
-1 & -\pi
\end{array}\right)\right]=\left(\begin{array}{cc}
\frac{1}{2} & 0 \\
0 & \frac{1}{2}
\end{array}\right)
\end{aligned}
$$

So this is a completely unpolarized state operator. It again has trace one.

(d) [4] In each of the cases listed above, what is the expectation value of S_{z} ?

The expectation value can be found via

$$
\left\langle S_{z}\right\rangle=\operatorname{Tr}\left(\rho S_{z}\right)=\frac{1}{2} \hbar \operatorname{Tr}\left(\rho \sigma_{z}\right)
$$

In every case, this trace is easy to work out.

$$
\begin{aligned}
& \left\langle S_{z}\right\rangle_{a}=\frac{1}{2} \hbar \operatorname{Tr}\left[\left(\begin{array}{cc}
\frac{3}{4} & 0 \\
0 & \frac{1}{4}
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\right]=\frac{1}{2} \hbar\left(\frac{3}{4}-\frac{1}{4}\right)=\frac{1}{4} \hbar, \\
& \left\langle S_{z}\right\rangle_{b}=\frac{1}{2} \hbar \operatorname{Tr}\left[\left(\begin{array}{cc}
\frac{1}{2}+\frac{1}{\pi} & 0 \\
0 & \frac{1}{2}-\frac{1}{\pi}
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\right]=\frac{1}{2} \hbar\left(\frac{1}{2}+\frac{1}{\pi}-\frac{1}{2}+\frac{1}{\pi}\right)=\frac{1}{\pi} \hbar \\
& \left\langle S_{z}\right\rangle_{b}=\frac{1}{2} \hbar \operatorname{Tr}\left[\left(\begin{array}{cc}
\frac{1}{2} & 0 \\
0 & \frac{1}{2}
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\right]=\frac{1}{2} \hbar\left(\frac{1}{2}-\frac{1}{2}\right)=0 .
\end{aligned}
$$

Perhaps not surprisingly, the first two cases have a positive expectation value, while the third vanishes. This is because in the first two cases, though the spin is random, it's definitely at an angle that is closer to $+z$ than $-z$, but in the third it is equally likely at all angles.

