## Solutions to Chapter 11

3. [25] This problem should be worked entirely in the Heisenberg formulation of quantum mechanics. A particle lies in the one-dimensional harmonic oscillator potential, so $H=P^{2} / 2 m+\frac{1}{2} m \omega^{2} X^{2}$.
(a) [5] Work out $d X / d t$ and $d P / d t$.

According to the Heisenberg equations of motion,

$$
\begin{aligned}
& \frac{d X}{d t}=\frac{i}{\hbar}[H, X]=\frac{i}{2 m \hbar}\left[P^{2}, X\right]=\frac{i}{2 m \hbar}(-i \hbar P-i \hbar P)=\frac{P}{m} \\
& \frac{d P}{d t}=\frac{i}{\hbar}[H, P]=\frac{i m \omega^{2}}{2 \hbar}\left[X^{2}, P\right]=\frac{i m \omega^{2}}{2 \hbar}(i \hbar X+i \hbar X)=-m \omega^{2} X .
\end{aligned}
$$

(b) [5] Define the operators $a(t)=\sqrt{m \omega / 2 \hbar} X(t)+i P(t) / \sqrt{2 \hbar m \omega}$ and its Hermitian conjugate $a^{\dagger}(t)$. Show that these satisfy equations $d a(t) / d t \propto a(t)$ and $d a^{\dagger}(t) / d t \propto a^{\dagger}(t)$, and determine the proportionality constant in each case.

$$
\begin{aligned}
& \frac{d a}{d t}=\sqrt{\frac{m \omega}{2 \hbar}} \frac{\partial X}{\partial t}+\frac{i}{\sqrt{2 \hbar m \omega}} \frac{\partial P}{\partial t}=\sqrt{\frac{m \omega}{2 \hbar}} \frac{P}{m}-\frac{i}{\sqrt{2 \hbar m \omega}} m \omega^{2} X=-i \omega\left[\sqrt{\frac{m \omega}{2 \hbar}} X+\frac{i}{\sqrt{2 \hbar m \omega}} P\right]=-i \omega a \\
& \frac{d a^{\dagger}}{d t}=\sqrt{\frac{m \omega}{2 \hbar}} \frac{\partial X}{\partial t}-\frac{i}{\sqrt{2 \hbar m \omega}} \frac{\partial P}{\partial t}=\sqrt{\frac{m \omega}{2 \hbar}} \frac{P}{m}+\frac{i}{\sqrt{2 \hbar m \omega}} m \omega^{2} X=i \omega\left[\sqrt{\frac{m \omega}{2 \hbar}} X-\frac{i}{\sqrt{2 \hbar m \omega}} P\right]=i \omega a^{\dagger} .
\end{aligned}
$$

(c) [5] Solve the differential equations for $a(t)$ and $a^{\dagger}(t)$ in terms of $a(0)$ and $a^{\dagger}(0)$. As a check, confirm that the Hamiltonian $H=\hbar \omega\left[a^{\dagger}(t) a(t)+\frac{1}{2}\right]$, is independent of time.

The solutions of $\frac{d}{d t} a(t)=-i \omega a(t)$ and $\frac{d}{d t} a^{\dagger}(t)=i \omega a^{\dagger}(t)$ are respectively

$$
a(t)=e^{-i \omega t} a(0) \quad \text { and } \quad a^{\dagger}(t)=e^{i \omega t} a^{\dagger}(0)
$$

Plugging these into the Hamiltonian, we see that the time dependence goes away.

$$
H=\hbar \omega\left[a^{\dagger}(t) a(t)+\frac{1}{2}\right]=\hbar \omega\left[e^{i \omega t} a^{\dagger}(0) e^{-i \omega t} a(0)+\frac{1}{2}\right]=\hbar \omega\left[a^{\dagger}(0) a(0)+\frac{1}{2}\right] .
$$

(d) [5] Rewrite $\boldsymbol{X}(\boldsymbol{t})$ and $\boldsymbol{P}(\boldsymbol{t})$ in terms of $a(t)$ and $a^{\dagger}(t)$, and rewrite $a(0)$ and $a^{\dagger}(0)$ in terms of $X(0)$ and $P(0)$, so that $X(t)$ and $P(t)$ depend only on $X(0)$ and $P(0)$. You may find the identities below useful.

$$
X(t)=\sqrt{\hbar / 2 m \omega}\left[a(t)+a^{\dagger}(t)\right] \text { and } P(t)=i \sqrt{\hbar m \omega / 2}\left[a^{\dagger}(t)-a(t)\right]
$$

As a check, you should find $X(T)=X(0)$, if $\boldsymbol{T}$ is the classical period.
These are fairly straightforward. We start with the position operator:

$$
\begin{aligned}
X(t) & =\sqrt{\frac{\hbar}{2 m \omega}}\left[a(t)+a^{\dagger}(t)\right]=\sqrt{\frac{\hbar}{2 m \omega}}\left[e^{-i \omega t} a(0)+e^{i \omega t} a^{\dagger}(0)\right] \\
& =\sqrt{\frac{\hbar}{2 m \omega}}\left[e^{-i \omega t}\left(\sqrt{\frac{m \omega}{2 \hbar}} X(0)+\frac{i}{\sqrt{2 \hbar m \omega}} P(0)\right)+e^{i \omega t}\left(\sqrt{\frac{m \omega}{2 \hbar}} X(0)-\frac{i}{\sqrt{2 \hbar m \omega}} P(0)\right)\right] \\
& =\frac{1}{2} X(0)\left(e^{-i \omega t}+e^{i \omega t}\right)+\frac{i}{2 m \omega} P(0)\left(e^{-i \omega t}-e^{i \omega t}\right)=X(0) \cos (\omega t)+\frac{P(0)}{m \omega} \sin (\omega t) .
\end{aligned}
$$

We now do the momentum operator in exactly the same way.

$$
\begin{aligned}
P(t) & =i \sqrt{\frac{\hbar m \omega}{2}}\left[a^{\dagger}(t)-a(t)\right]=i \sqrt{\frac{\hbar m \omega}{2}}\left[e^{i \omega t} a^{\dagger}(0)-e^{-i \omega t} a(0)\right] \\
& =i \sqrt{\frac{\hbar m \omega}{2}}\left[e^{i \omega t}\left(\sqrt{\frac{m \omega}{2 \hbar}} X(0)-\frac{i}{\sqrt{2 \hbar m \omega}} P(0)\right)-e^{-i \omega t}\left(\sqrt{\frac{m \omega}{2 \hbar}} X(0)+\frac{i}{\sqrt{2 \hbar m \omega}} P(0)\right)\right] \\
& =i \frac{m \omega}{2} X(0)\left(e^{i \omega t}-e^{-i \omega t}\right)+\frac{1}{2} P(0)\left(e^{i \omega t}+e^{-i \omega t}\right)=P(0) \cos (\omega t)-m \omega X(0) \sin (\omega t) .
\end{aligned}
$$

It is now obvious that if we set $T=2 \pi / \omega$, the classical period, then $X(T)=X(0)$.
(e) [5] Suppose the quantum state (which is independent of time) is chosen to be an eigenstate of $X(0), X(0)|\psi\rangle=x_{0}|\psi\rangle$. Show that at each of the times $t=\frac{1}{4} T$, $t=\frac{1}{2} T, t=\frac{3}{4} T$, and $t=T$, it is an eigenstate of either $X(t)$ or $P(t)$, and determine its eigenvalue.

These times correspond to $\omega t=\frac{\pi}{2}, \pi, \frac{3 \pi}{2}$, and $2 \pi$ respectively. We therefore have

$$
\begin{array}{llll}
X\left(\frac{1}{4} T\right)=P(0) / m \omega, & X\left(\frac{1}{2} T\right)=-X(0), & X\left(\frac{3}{4} T\right)=-P(0) / m \omega, & X(T)=X(0), \\
P\left(\frac{1}{4} T\right)=-m \omega X(0), & P\left(\frac{1}{2} T\right)=-P(0), & P\left(\frac{3}{4} T\right)=m \omega X(0), & P(T)=P(0) .
\end{array}
$$

From these it is easy to see that

$$
\begin{aligned}
& P\left(\frac{1}{4} T\right)|\psi\rangle=-m \omega x_{0}|\psi\rangle, \quad X\left(\frac{1}{2} T\right)|\psi\rangle=-x_{0}|\psi\rangle, \\
& P\left(\frac{3}{4} T\right)|\psi\rangle=m \omega x_{0}|\psi\rangle, \quad X(T)|\psi\rangle=x_{0}|\psi\rangle .
\end{aligned}
$$

