Quantum Mechanics 742 - Second Test Covering Chapters 14 - 18

The following new equations you should memorize, and understand how to use them:

Other things you should know:

- The meaning of cross-section and differential cross-section
- Doing integrals in spherical coordinates
- How to do integrals like $\int f(x) \delta[g(x)] d x$
- In the adiabatic approximation, make sure the eigenstates you use are correct eigenstates of the initial and final Hamiltonian.
- In the adiabatic approximation: The lowest energy state goes to the lowest state, second lowest to second lowest, etc.
- However, if there is a symmetry that always commutes with the Hamiltonian, then first sort states by eigenvalues of that symmetry
- For harmonic perturbations, make sure you know how to extract W given $W(t)$, and don't get the two confused
- In contrast, when the perturbation is independent of time, $W(t)=W$
- How to compute expressions like $\boldsymbol{\varepsilon}_{\mathbf{k} \sigma} \cdot \mathbf{r}_{F I}$ for each of the two possible polarizations
- How to average (or sum) over polarizations, and average (or integrate) over angles
- How to take the limit $V \rightarrow \infty$, and turn sums over final states into integrals you can do
- What a quantum state like $\left|n_{1}, \mathbf{k}_{1}, \sigma_{1} ; n_{2}, \mathbf{k}_{2}, \sigma_{2}\right\rangle$ means, or $\left|\phi_{a} ; n_{1}, \mathbf{k}_{1}, \sigma_{1} ; n_{2}, \mathbf{k}_{2}, \sigma_{2}\right\rangle$ means
- Understanding that after quantizing the EM field, electric and magnetic fields are now operators that are functions of \mathbf{r}, but not t
- How to write out sums with EM fields and expectation values where the sums collapse to few terms
- How to find the energy of a system of photons, or photons plus an atom

> - Related: the time dependence of such a system

- How to create or annihilate one photon from any state with any number of photons
- Qualitatively, what our diagrams mean in our computations
- Why we concentrate only on certain diagrams when scattering near a resonance

The following new equations you need not memorize, but you should know how to use them if given to you:

