Quantum Mechanics 742 - First Test

The following new equations you should have memorized:

Other things you should know:

- Many previous things, especially from last semester's midterm?
- The time evolution operator is linear and unitary; this allows you to prove things from it
- How to use the propagator to get the wave function at time t given it at time t_{0}
- How to get the state operator as a matrix, or to write it in terms of basis vectors
- How to tell if a state operator is legal; how to tell if it is a pure or mixed state
- How to evolve the state operator and use it for evaluating expectation values
- In the Heisenberg formalism, state vectors don't change, but operators do
- How to estimate the energy of the ground state in the variational method
- How to find the classical turning points a and b in the WKB method, and use it to estimate the energy
- How to divide a Hamiltonian into H_{0} and a perturbation W
- How to estimate energies and eigenstates in non-degenerate perturbation theory
- When degenerate perturbation theory is needed
- How to figure out the leading (zeroth order) eigenstates and eigenenergies when you have degenerate perturbation theory
- How and why to change basis from eigenstates of operators like L_{z} and S_{z} to eigenstates of \mathbf{J}^{2} and J_{z} when dealing with perturbations of the form $\mathbf{L} \cdot \mathbf{S}$
- How to calculate eigenvalues of things like $\mathbf{L} \cdot \mathbf{S}$

The following equations you need not memorize, but you should know how to use them if given to you:

