Final Information

Equations you should memorize:

$$
\begin{gather*}
c=\hbar=\varepsilon_{0}=\mu_{0}=1 . \tag{1.18}\\
\gamma=\frac{1}{\sqrt{1-v^{2}}}=\frac{L_{0}}{L}=\frac{t}{\tau}=\frac{E}{m}, \tag{2.8}\\
u \cdot v \equiv g_{\alpha \beta} u^{\alpha} v^{\beta}=u^{0} v^{0}-\mathbf{u} \cdot \mathbf{v} . \tag{2.11}\\
m^{2} \equiv p \cdot p=E^{2}-\mathbf{p}^{2} . \tag{2.33}\\
\mathbf{v}=\frac{\mathbf{p}}{E} . \tag{2.34}\\
p^{\mu}=(E, \mathbf{p})=(E, p \sin \theta \cos \phi, p \sin \theta \sin \phi, p \cos \theta) . \tag{2.35}\\
\left(\bar{\Psi}_{A} \Gamma_{1} \Gamma_{2} \cdots \Gamma_{n} \Psi_{B}\right)^{*}=\bar{\Psi}_{B} \bar{\Gamma}_{n} \cdots \bar{\Gamma}_{2} \bar{\Gamma}_{1} \Psi_{A} . \\
\not p \equiv p_{\mu} \gamma^{\mu} . \tag{3.43}\\
\not p^{2}=p^{2} \tag{3.47}\\
\gamma^{\mu} \gamma_{5}=-\gamma_{5} \gamma^{\mu} \\
\left|t_{1}, p_{1}, s_{1} ; t_{2}, p_{2}, s_{2}\right\rangle=\left\{\begin{array}{c}
-\left|t_{2}, p_{2}, s_{2} ; t_{1}, p_{1}, s_{1}\right\rangle \quad \text { if two fermions, } \\
\left|t_{2}, p_{2}, s_{2} ; t_{1}, p_{1}, s_{1}\right\rangle
\end{array} \quad \text { otherwise } .\right. \\
\operatorname{Tr}\left(\gamma^{\mu_{1}} \gamma^{\mu_{2}} \cdots \gamma^{\mu_{2 N+1}}\right)=\operatorname{Tr}\left(\gamma_{5} \gamma^{\mu_{1}} \gamma^{\mu_{2}} \cdots \gamma^{\mu_{2 N+1}}\right)=0 . \tag{4.5}\\
\operatorname{Tr}(1)=4, \tag{6.1}\\
\operatorname{Tr}\left(\gamma^{\mu} \gamma^{v}\right)=4 g^{\mu v}, \tag{6.2a}\\
\operatorname{Tr}\left(\gamma_{5}\right)=\operatorname{Tr}\left(\gamma_{5} \gamma^{\alpha} \gamma^{\beta}\right)=0, \tag{6.2b}
\end{gather*}
$$

Feynman Diagram things you should know:

- How to draw Feynman diagrams
- How to get the amplitudes from them:
o Propagator for scalar, fermion and photon/gluon (not W or Z propagator):
o Follow fermion lines backwards from head to tail
o Subtract diagrams with swapped fermion lines, otherwise add
- How to square them
o Sum on final spins - average over initial spins
o Turn them into traces for fermions
- How to get differential/total cross-sections and decay rates
o Factor of $1 / n$! for identical final particles in total (not differential)

The standard model

Particles: You should memorize:

- Names, abbreviations, charges, spins, and number of colors for all standard model particles
- Which generations the fermions belong to
$0 \quad 1^{\text {st }}$ (lightest) generation: u,d,e, ve
$0 \quad 2^{\text {nd }}$ (medium) generation: c, s, μ, ν_{μ}
$0 \quad 3^{\text {rd }}$ (heavy) generation: $\mathrm{t}, \mathrm{b}, \tau, \nu_{\tau}$
- Which particles have masses (quarks, charged leptons, W, Z, Higgs)
- Which quarks are involved with $\mathrm{SU}(3)_{F}$ symmetry: u, d, s
- Which gauge bosons are responsible for each force:
o photon: QED
o gluon: QCD
o W and Z : weak forces
For QED:
- Memorize the fermion-photon Feynman rule, the photon and fermion propagators (Fig. 7-2)
For Strong Forces:
- Understand how to use raising and lowering operators $I_{ \pm}$for isospin states
o On both kets and bras
- Understand how to use $T_{i \rightarrow j}$ and states like $\left|B_{i j k}^{*}\right\rangle$ and $\left|M_{i}^{j}\right\rangle$
- Understand that isospin generators (approximately) and $\mathrm{SU}(3)$ operators (very approximately) commute with the Hamiltonian density \mathcal{H}.
For QCD:
- Which particles have color, and hence strong interactions
- Memorize the drawings for the quark-gluon coupling and the gluon selfcouplings. You don't need to know the Feynman rule
For Weak interactions:
- Which W-couplings are allowed for fermions
o In leptons, connect charged lepton with its corresponding neutrino
o In quarks, connect any up-type quark with any down-type quark
o But CKM contribution is large only when you stay within a generation
- Which Z-couplings are allowed for fermions
o Every fermion couples only to itself
For the Higgs and standard model
- Higgs is responsible for all masses (quarks, charged leptons, W and Z)
- The potential of the Higgs field is not at zero, but at some non-zero value
o This breaks the symmetry, allowing non-gauge invariant effects
- The gauge group of the standard model is $\operatorname{SU}(3) x S U(2) x U(1)$
o $\mathrm{SU}(3)$ is strong, $\mathrm{U}(1)$ lives in the $\mathrm{SU}(2) \mathrm{xU}(1)$, and the weak interactions are what are left over in $\mathrm{SU}(2) \mathrm{xU}(1)$
You will be provided with:
- Everything, or nearly everything, on page v (penultimate page of book)
- All of the equations on the next page

Useful Formulas and Identities

