## **Final Information**

Equations you should memorize:

$$c = \hbar = \varepsilon_0 = \mu_0 = 1.$$
 (1.18)

$$\gamma = \frac{1}{\sqrt{1 - v^2}} = \frac{L_0}{L} = \frac{t}{\tau} = \frac{E}{m},$$
(2.8)

$$u \cdot v \equiv g_{\alpha\beta} u^{\alpha} v^{\beta} = u^0 v^0 - \mathbf{u} \cdot \mathbf{v} \,. \tag{2.11}$$

$$m^2 \equiv p \cdot p = E^2 - \mathbf{p}^2 \,. \tag{2.33}$$

$$\mathbf{v} = \frac{\mathbf{p}}{E} \,. \tag{2.34}$$

$$s = (p_1 + p_2)^2 = (E_1 + E_2)^2 - (\mathbf{p}_1 + \mathbf{p}_2)^2.$$
(2.35)

$$p^{\mu} = (E, \mathbf{p}) = (E, p \sin \theta \cos \phi, p \sin \theta \sin \phi, p \cos \theta).$$
$$(\overline{\Psi}_{A} \Gamma_{1} \Gamma_{2} \cdots \Gamma_{n} \Psi_{B})^{*} = \overline{\Psi}_{B} \overline{\Gamma}_{n} \cdots \overline{\Gamma}_{2} \overline{\Gamma}_{1} \Psi_{A}.$$

$$\Gamma_{1}\Gamma_{2}\cdots\Gamma_{n}\Psi_{B})^{*} = \overline{\Psi}_{B}\overline{\Gamma}_{n}\cdots\overline{\Gamma}_{2}\overline{\Gamma}_{1}\Psi_{A}.$$
(3.43)
$$\mathbf{m} \equiv \mathbf{n} \ \gamma^{\mu}$$
(3.47)

$$p = p_{\mu} \gamma^{\mu} . \tag{3.47}$$

$$p^{2} = p^{2}$$

$$\gamma^{\mu}\gamma_{5} = -\gamma_{5}\gamma^{\mu}$$

$$|t_{1}, p_{1}, s_{1}; t_{2}, p_{2}, s_{2}\rangle = \begin{cases} -|t_{2}, p_{2}, s_{2}; t_{1}, p_{1}, s_{1}\rangle & \text{if two fermions ,} \\ |t_{2}, p_{2}, s_{2}; t_{1}, p_{1}, s_{1}\rangle & \text{otherwise .} \end{cases}$$

$$(4.5)$$

$$\operatorname{Tr}\left(\gamma^{\mu_{1}}\gamma^{\mu_{2}}\cdots\gamma^{\mu_{2N+1}}\right) = \operatorname{Tr}\left(\gamma_{5}\gamma^{\mu_{1}}\gamma^{\mu_{2}}\cdots\gamma^{\mu_{2N+1}}\right) = 0.$$
(6.1)

$$\mathrm{Tr}(1) = 4, \tag{6.2a}$$

$$\operatorname{Tr}\left(\gamma^{\mu}\gamma^{\nu}\right) = 4g^{\mu\nu}, \qquad (6.2b)$$

$$\operatorname{Tr}(\gamma_5) = \operatorname{Tr}(\gamma_5 \gamma^{\alpha} \gamma^{\beta}) = 0, \qquad (6.3a)$$

Feynman Diagram things you should know:

- How to draw Feynman diagrams
- How to get the amplitudes from them:
  - Propagator for scalar, fermion and photon/gluon (not *W* or *Z* propagator):
  - o Follow fermion lines backwards from head to tail
  - o Subtract diagrams with swapped fermion lines, otherwise add
- How to square them
  - Sum on final spins average over initial spins
  - Turn them into traces for fermions
- How to get differential/total cross-sections and decay rates
  - Factor of 1/n! for identical final particles in total (not differential)

## The standard model

Particles: You should memorize:

- Names, abbreviations, charges, spins, and number of colors for all standard model particles
- Which generations the fermions belong to
  - $\circ$  1<sup>st</sup> (lightest) generation: u,d,e,v<sub>e</sub>
  - o  $2^{nd}$  (medium) generation: c,s, $\mu$ , $\nu_{\mu}$
  - o  $3^{rd}$  (heavy) generation: t,b, $\tau$ , $\nu_{\tau}$
- Which particles have masses (quarks, charged leptons, W, Z, Higgs)
- Which quarks are involved with  $SU(3)_F$  symmetry: u, d, s
- Which gauge bosons are responsible for each force:
  - o photon: QED
  - o gluon: QCD
  - $\circ$  W and Z: weak forces

For QED:

• Memorize the fermion-photon Feynman rule, the photon and fermion propagators (Fig. 7-2)

For Strong Forces:

- Understand how to use raising and lowering operators  $I_{\pm}$  for isospin states
  - On both kets and bras
- Understand how to use  $T_{i \rightarrow j}$  and states like  $|B_{ijk}^*\rangle$  and  $|M_i^j\rangle$

• Understand that isospin generators (approximately) and SU(3) operators (very approximately) commute with the Hamiltonian density  $\mathcal{H}$ .

For QCD:

- Which particles have color, and hence strong interactions
- Memorize the drawings for the quark-gluon coupling and the gluon selfcouplings. You don't need to know the Feynman rule

For Weak interactions:

- Which *W*-couplings are allowed for fermions
  - In leptons, connect charged lepton with its corresponding neutrino
  - In quarks, connect any up-type quark with any down-type quark
  - But CKM contribution is large only when you stay within a generation
- Which Z-couplings are allowed for fermions
  - Every fermion couples only to itself

For the Higgs and standard model

- Higgs is responsible for all masses (quarks, charged leptons, *W* and *Z*)
- The potential of the Higgs field is not at zero, but at some non-zero value
  - This breaks the symmetry, allowing non-gauge invariant effects
- The gauge group of the standard model is SU(3)xSU(2)xU(1)
  - SU(3) is strong, U(1) lives in the SU(2)xU(1), and the weak interactions are what are left over in SU(2)xU(1)

You will be provided with:

- Everything, or nearly everything, on page v (penultimate page of book)
- All of the equations on the next page

## **Useful Formulas and Identities**

