Solutions to Problems 7

3. Draw all six Feynman diagrams for the scattering $e^{+} \gamma \rightarrow e^{+} \gamma \gamma$.

This is straightforward, but boring. It is more challenging for me because I am not drawing them by hand. I have color coded the photon lines to try to help keep track of which interaction is which.

5. Calculate the total cross section ratio $\sigma\left(e^{+} e^{-} \rightarrow q \bar{q}\right) / \sigma\left(e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}\right)$, summed over all quarks (multiply each contribution by $\mathbf{3}$ for colors), treating the quark as massless if $\sqrt{s}>2 m$, and of course ignoring it if $\sqrt{s}<2 m$. Do so in the range $2 \mathrm{GeV}<\sqrt{s}<3 \mathrm{GeV}$ (ignore the c quark), $5 \mathrm{GeV}<\sqrt{s}<9 \mathrm{GeV}$ (include the c quark) and $11 \mathrm{GeV}<\sqrt{s}<50 \mathrm{GeV}$ (include the \mathbf{b} quark). Compare to the experimental values illustrated in Fig. 7-10 below. What do you think is going on at the other energies shown?

The requested ratio is just

$$
\frac{\sigma\left(e^{+} e^{-} \rightarrow q \bar{q}\right)}{\sigma\left(e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}\right)}=3 \cdot \frac{4 \pi \alpha^{2} Q^{2}}{3 s} \cdot \frac{3 s}{4 \pi \alpha^{2}(-1)^{2}}=3 Q^{2} .
$$

The contribution from the up or charm quark would be $3\left(\frac{2}{3}\right)^{2}=\frac{4}{3}$. The contribution from the down, strange, or bottom quark would be $3\left(-\frac{1}{3}\right)^{2}=\frac{1}{3}$. Depending on the energy range, we then have

$$
\frac{\sigma\left(e^{+} e^{-} \rightarrow q \bar{q}\right)}{\sigma\left(e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}\right)}=\left\{\begin{array}{cc}
\frac{4}{3}+2 \cdot \frac{1}{3} & 2 \mathrm{GeV}<\sqrt{s}<3 \mathrm{GeV} \\
2 \cdot \frac{4}{3}+2 \cdot \frac{1}{3} & 5 \mathrm{GeV}<\sqrt{s}<9 \mathrm{GeV} \\
2 \cdot \frac{4}{3}+3 \cdot \frac{1}{3} & 11 \mathrm{GeV}<\sqrt{s}<50 \mathrm{GeV}
\end{array}\right\}=\left\{\begin{array}{cc}
2.00 & 2 \mathrm{GeV}<\sqrt{s}<3 \mathrm{GeV} \\
3.33 & 5 \mathrm{GeV}<\sqrt{s}<9 \mathrm{GeV} \\
3.67 & 11 \mathrm{GeV}<\sqrt{s}<50 \mathrm{GeV}
\end{array}\right.
$$

I have sketched below dashed lines showing approximately these curve positions. You will note that in the regions listed, they actually work pretty well, though obviously around 40 GeV the Z-resonance (which causes weak interactions) is starting to have some effect. As for other energies, below 2 GeV there is clearly something complicated going on (involving the strong interactions of the light quarks), the spikes for the J / ψ and $\psi(2 \mathrm{~s})$ are caused by resonances
(bound states of charm/anticharm quarks), and there are more resonances around 10 GeV (bound states of bottom-anti bottom quarks).

Figure 7-10: The ratio $R=\sigma\left(e^{+} e^{-} \rightarrow\right.$ hadrons $) / \sigma\left(e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}\right)$. The cross-section to hadrons is believed to be caused by $\sigma\left(e^{+} e^{-} \rightarrow\right.$ quarks $)$.
6. Calculate the differential and total cross-section for $e^{+} e^{-} \rightarrow f \bar{f}$, treating the electron mass as zero, but not ignoring the fermion mass \boldsymbol{m}. Sketch the result for $3 \sigma E^{2} / \pi Q^{2} \alpha^{2}$ as a function of m / E. It should be $\mathbf{1}$ if $\boldsymbol{m}=\mathbf{0}$.

We start with eq. (7.19), but we keep the masses. We have

$$
\begin{aligned}
& \frac{1}{4} \sum_{\text {spins }}|i \mathcal{M}|^{2}=\frac{e^{4} Q^{2}}{4 s^{2}} \operatorname{Tr}\left(\not p 2 \gamma^{\mu} \not \not{ }_{1} \gamma^{v}\right) \operatorname{Tr}\left[\left(\not p_{3}+m\right) \gamma_{\mu}\left(\not p_{4}-m\right) \gamma_{\nu}\right] \\
& =\frac{e^{4} Q^{2}}{4 s^{2}} \operatorname{Tr}\left(\not \chi_{2} \gamma^{\mu} \not 1_{1} \gamma^{\nu}\right) \operatorname{Tr}\left(\not \chi_{3} \gamma_{\mu} \not{ }_{4} \gamma_{\nu}-m^{2} \gamma_{\mu} \gamma_{\nu}\right) \\
& =\frac{4 e^{4} Q^{2}}{s^{2}}\left(p_{2}^{\mu} p_{1}^{\nu}+p_{1}^{\mu} p_{2}^{\nu}-g^{\mu \nu} p_{2} \cdot p_{1}\right)\left(p_{3 \mu} p_{4 \nu}+p_{3 \nu} p_{4 \mu}-g_{\mu \nu} p_{3} \cdot p_{4}-m^{2} g_{\mu \nu}\right) \\
& =\frac{4 e^{4} Q^{2}}{s^{2}}\left[\begin{array}{l}
2\left(p_{2} \cdot p_{3}\right)\left(p_{1} \cdot p_{4}\right)+2\left(p_{2} \cdot p_{4}\right)\left(p_{1} \cdot p_{3}\right) \\
+\left(p_{2} \cdot p_{1}\right)\left(p_{3} \cdot p_{4}\right)(-1-1-1-1+4)+m^{2}\left(p_{1} \cdot p_{2}\right)(-1-1+4)
\end{array}\right] \\
& =\frac{8 e^{4} Q^{2}}{s^{2}}\left[\left(p_{2} \cdot p_{3}\right)\left(p_{1} \cdot p_{4}\right)+\left(p_{2} \cdot p_{4}\right)\left(p_{1} \cdot p_{3}\right)+m^{2}\left(p_{1} \cdot p_{2}\right)\right]
\end{aligned}
$$

In the center of mass frame, the electron's energy E is the same as their momenta, and we have total energy $2 E$. The final state particles will split this energy between them, and will therefore each have energy E as well, but their momenta will be reduced to $p=\sqrt{E^{2}-m^{2}}$. Hence the momenta will be

$$
\begin{aligned}
& p_{1}^{\mu}=(E, 0,0, E), \quad p_{3}^{\mu}=(E, p \sin \theta \cos \phi, p \sin \theta \sin \phi, p \cos \theta) \\
& p_{2}^{\mu}=(E, 0,0,-E), \quad p_{4}^{\mu}=(E,-p \sin \theta \cos \phi,-p \sin \theta \sin \phi,-p \cos \theta)
\end{aligned}
$$

We then get all the relevant dot products:

$$
p_{1} \cdot p_{4}=p_{2} \cdot p_{3}=E^{2}+E p \cos \theta, \quad p_{1} \cdot p_{3}=p_{2} \cdot p_{4}=E^{2}-E p \cos \theta, \quad p_{1} \cdot p_{2}=2 E^{2} .
$$

Substituting this in, along with $s=4 E^{2}$, we have

$$
\frac{1}{4} \sum_{\text {spins }}|i \mathcal{M}|^{2}=\frac{8 e^{4} Q^{2}}{\left(4 E^{2}\right)^{2}}\left[\left(E^{2}+E p \cos \theta\right)^{2}+\left(E^{2}-E p \cos \theta\right)^{2}+2 m^{2} E^{2}\right]=\frac{e^{4} Q^{2}}{E^{2}}\left(E^{2}+p^{2} \cos ^{2} \theta+m^{2}\right)
$$

We now proceed to the cross-section in the usual way.

$$
\begin{aligned}
\sigma & =\frac{D}{4\left|E_{2} \mathbf{p}_{1}-E_{1} \mathbf{p}_{2}\right|}=\frac{1}{8 E^{2}} \frac{p}{16 \pi^{2} E_{c m}} \int d \Omega \frac{1}{4} \sum_{\text {spins }}|i \mathcal{M}|^{2}=\frac{p e^{4} Q^{2}}{256 \pi^{2} E^{3} E^{2}} \int d \Omega\left(E^{2}+p^{2} \cos ^{2} \theta+m^{2}\right) \\
& =\frac{\alpha^{2} Q^{2} p}{16 E^{5}} 2 \pi \int_{-1}^{1}\left(E^{2}+p^{2} \cos ^{2} \theta+m^{2}\right) d \cos \theta=\frac{\pi \alpha^{2} Q^{2} p}{8 E^{5}}\left(2 E^{2}+\frac{2}{3} p^{2}+2 m^{2}\right) \\
& =\frac{\pi \alpha^{2} Q^{2}}{4 E^{5}} \sqrt{E^{2}-m^{2}}\left(E^{2}+\frac{1}{3} E^{2}-\frac{1}{3} m^{2}+m^{2}\right)=\frac{\pi Q^{2} \alpha^{2}}{3 E^{2}}\left\{\left(1+\frac{m^{2}}{2 E^{2}}\right) \sqrt{1-\frac{m^{2}}{E^{2}}}\right\} .
\end{aligned}
$$

The factor in $\}$'s is what we were asked to graph. A sketch of the result is given at right. Note that for even modestly small values of m / E, it is very close to one; for example, at $m / E=0.5$ it is already 97.4% of its maximum value.

