## Solutions to Problems 6a

1. Simplify $\sum_{s} \bar{u}(p, s) M u(p, s)$ for the matrices $M=1, \gamma_{5}, \gamma^{\mu}, \gamma_{5} \gamma^{\mu}$ and $\gamma^{\mu} \gamma^{\nu}$.

The trick is to simply write this as a trace, then we have

$$
\sum_{s} \bar{u}(p, s) M u(p, s)=\sum_{s} \operatorname{Tr}[\bar{u}(p, s) M u(p, s)]=\sum_{s} \operatorname{Tr}[M u(p, s) \bar{u}(p, s)]=\operatorname{Tr}[M(\not p+m)] .
$$

We now simply work this out for each of the cases we have, keeping in mind that only even numbers of Dirac matrices (not counting $\gamma_{5}$ 's) contribute. So we have

$$
\begin{aligned}
& \sum_{s} \bar{u}(p, s) 1 u(p, s)=\operatorname{Tr}[1(\not p+m)]=\operatorname{Tr}(m)=4 m, \\
& \sum_{s} \bar{u}(p, s) \gamma_{5} u(p, s)=\operatorname{Tr}\left[\gamma_{5}(\not p+m)\right]=m \operatorname{Tr}\left(\gamma_{5}\right)=0, \\
& \sum_{s} \bar{u}(p, s) \gamma^{\mu} u(p, s)=\operatorname{Tr}\left[\gamma^{\mu}(\not p+m)\right]=\operatorname{Tr}\left(\gamma^{\mu} \not p\right)=p_{v} \operatorname{Tr}\left(\gamma^{\mu} \gamma^{v}\right)=4 p_{v} g^{\mu v}=4 p^{v}, \\
& \sum_{s} \bar{u}(p, s) \gamma_{5} \gamma^{\mu} u(p, s)=\operatorname{Tr}\left[\gamma_{5} \gamma^{\mu}(\not p+m)\right]=\operatorname{Tr}\left(\gamma_{5} \gamma^{\mu} \not p\right)=0, \\
& \sum_{s} \bar{u}(p, s) \gamma^{\mu} \gamma^{v} u(p, s)=\operatorname{Tr}\left[\gamma^{\mu} \gamma^{v}(\not p+m)\right]=\operatorname{Tr}\left(\gamma^{\mu} \gamma^{v} m\right)=4 m g^{\mu v} .
\end{aligned}
$$

2. If $i \mathcal{M}=a\left[\bar{u}(p, s)\left(\not p+\not p^{\prime}\right)\left(1-\gamma_{5}\right) v\left(p^{\prime}, s^{\prime}\right)\right]$, where $\boldsymbol{a}$ is constant, simplify $\left.\sum_{s, s^{\prime}} i \mathcal{M}\right|^{2}$ as much as possible. Assume the mass associated with $\boldsymbol{p}$ is $\boldsymbol{m}$, so $p^{2}=m^{2}$, and the mass associated with $p^{\prime}$ is $\mathbf{0}$.

The first step is to simplify the expression as much as possible before proceeding. We note that $\not p$ is right next to $\bar{u}$, so we can immediately simplify $\bar{u} \not p=\bar{u} m$. Unfortunately, the $\not p^{\prime}$ is not adjacent to $v^{\prime}$, but we can take advantage of the anti-commutation with $\gamma_{5}$ to rewrite this term as

$$
\not p^{\prime}\left(1-\gamma_{5}\right) v\left(p^{\prime}, s^{\prime}\right)=\left(1+\gamma_{5}\right) \not p^{\prime} v\left(p^{\prime}, s^{\prime}\right)=0 .
$$

Hence the whole expression simplifies to

$$
i \mathcal{M}=a\left[\bar{u}(p, s) \not p\left(1-\gamma_{5}\right) v\left(p^{\prime}, s^{\prime}\right)\right]=m a\left[\bar{u}(p, s)\left(1-\gamma_{5}\right) v\left(p^{\prime}, s^{\prime}\right)\right]
$$

The complex conjugate of this expression is

$$
(i \mathcal{M})^{*}=a^{*} m\left[\bar{v}\left(p^{\prime}, s^{\prime}\right)\left(1+\gamma_{5}\right) u(p, s)\right]
$$

Multiplying this by the previous expression, we have

$$
|i \mathcal{M}|^{2}=m^{2} a a^{*}\left[\bar{u}(p, s)\left(1-\gamma_{5}\right) v\left(p^{\prime}, s^{\prime}\right) \bar{v}\left(p^{\prime}, s^{\prime}\right)\left(1+\gamma_{5}\right) u(p, s)\right] .
$$

We have pushed together the two factors in anticipation of rewriting it as a trace.

We now sum over spins and rewrite the expression as a trace. We have

$$
\begin{aligned}
\sum_{s, s^{\prime}}|i \mathcal{M}|^{2} & =m^{2} a a^{*} \sum_{s, s^{\prime}}\left[\bar{u}(p, s)\left(1-\gamma_{5}\right) v\left(p^{\prime}, s^{\prime}\right) \bar{v}\left(p^{\prime}, s^{\prime}\right)\left(1+\gamma_{5}\right) u(p, s)\right] \\
& =m^{2} a a^{*} \sum_{s, s^{\prime}} \operatorname{Tr}\left[\bar{u}(p, s)\left(1-\gamma_{5}\right) v\left(p^{\prime}, s^{\prime}\right) \bar{v}\left(p^{\prime}, s^{\prime}\right)\left(1+\gamma_{5}\right) u(p, s)\right] \\
& =m^{2} a a^{*} \sum_{s, s^{\prime}} \operatorname{Tr}\left[u(p, s) \bar{u}(p, s)\left(1-\gamma_{5}\right) v\left(p^{\prime}, s^{\prime}\right) \bar{v}\left(p^{\prime}, s^{\prime}\right)\left(1+\gamma_{5}\right)\right] \\
& =m^{2} a a^{*} \operatorname{Tr}\left[(\not p+m)\left(1-\gamma_{5}\right)\left(\not p^{\prime}-0\right)\left(1+\gamma_{5}\right)\right] .
\end{aligned}
$$

We now take advantage of the fact that $\gamma_{5}$ anti-commutes with $\not p{ }^{\prime}$ to rewrite this as

$$
\begin{aligned}
\sum_{s, s^{\prime}}|i \mathcal{M}|^{2} & =m^{2} a a^{*} \operatorname{Tr}\left[(\not p+m) \not p^{\prime}\left(1+\gamma_{5}\right)\left(1+\gamma_{5}\right)\right]=m^{2} a a^{*} \operatorname{Tr}\left[(\not p+m) \not p^{\prime}\left(1+2 \gamma_{5}+\gamma_{5}^{2}\right)\right] \\
& =2 m^{2} a a^{*} \operatorname{Tr}\left[(\not p+m) \not p^{\prime}\left(1+\gamma_{5}\right)\right]=2 m^{2} a a^{*} \operatorname{Tr}\left[\not p \not p^{\prime}+\not p \not{ }^{\prime} \gamma_{5}\right]=8 m^{2} a a^{*}\left(p \cdot p^{\prime}\right) .
\end{aligned}
$$

That's about as simple as we can make it.

## 4. Calculate the decay rate $\phi \rightarrow \psi \bar{\psi}$ if we have scalar instead of pseudoscalar couplings.

The diagram is identical to the one in Fig. 6-4, but the rules are different, and the amplitude is $i \mathcal{M}=-i g\left(\bar{u} v^{\prime}\right)$. We therefore have


$$
|i \mathcal{M}|^{2}=(-i g)(i g)\left(\bar{u} v^{\prime}\right)\left(\bar{v}^{\prime} u\right)=g^{2}\left(\bar{u} v^{\prime} \bar{v}^{\prime} u\right)
$$

Summing on final state spins and introducing a trace in the usual way, we have

$$
\begin{aligned}
\sum_{s, s^{\prime}}|i \mathcal{M}|^{2} & =g^{2} \sum_{s, s^{\prime}} \operatorname{Tr}\left(\bar{u} v^{\prime} \vec{v}^{\prime} u\right)=g^{2} \sum_{s, s^{\prime}} \operatorname{Tr}\left(v^{\prime} \bar{v}^{\prime} u \bar{u}\right)=g^{2} \operatorname{Tr}\left[\left(\not p^{\prime}-m\right)(\not p+m)\right]=g^{2} \operatorname{Tr}\left(\not p \prime \not p-m^{2}\right) \\
& =4 g^{2}\left(p \cdot p^{\prime}-m^{2}\right) .
\end{aligned}
$$

It is not hard to see that

$$
\begin{aligned}
M^{2} & =k^{2}=\left(p+p^{\prime}\right)^{2}=p^{2}+p^{\prime 2}+2 p \cdot p^{\prime}=2 m^{2}+2 p \cdot p^{\prime}, \\
p \cdot p^{\prime} & =\frac{1}{2} M^{2}-2 m^{2} .
\end{aligned}
$$

We therefore have

$$
\sum_{s, s^{\prime}}|i \mathcal{M}|^{2}=4 g^{2}\left(\frac{1}{2} M^{2}-m^{2}-m^{2}\right)=2 g^{2}\left(M^{2}-4 m^{2}\right)
$$

We then use standard equations to carry us to the final decay rate, namely

$$
\Gamma=\frac{D}{2 M}=\frac{1}{2 M} \frac{p}{16 \pi^{2} E_{c m}} \int \sum_{s, s^{\prime}}|i \mathcal{M}|^{2} d \Omega=\frac{2 g^{2} p}{32 \pi^{2} M^{2}}(4 \pi)\left(M^{2}-4 m^{2}\right)=\frac{g^{2} p}{4 \pi M^{2}}\left(M^{2}-4 m^{2}\right)
$$

The initial energy $E$ is split evenly between the two final particles, so they each have energy $E=\frac{1}{2} M$, and hence momentum $p=\sqrt{\frac{1}{4} M^{2}-m^{2}}=\frac{1}{2} \sqrt{M^{2}-4 m^{2}}$. Putting it all together, we have

$$
\Gamma=\frac{g^{2}}{8 \pi M^{2}}\left(M^{2}-4 m^{2}\right)^{3 / 2}
$$

