
Solutions to Problems 6a 
 
1. Simplify    , ,

s
u p s Mu p s  for the matrices 5 51, , ,M       and    . 

 
 The trick is to simply write this as a trace, then we have 

              , , Tr , , Tr , , Tr .
s s s
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We now simply work this out for each of the cases we have, keeping in mind that only even 
numbers of Dirac matrices (not counting 5 ’s) contribute.  So we have 
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2. If      5, 1 ,i a u p s p p v p s       , where a is constant, simplify 
2

,s s
i

   as 

much as possible.  Assume the mass associated with p is m, so 2 2p m , and the mass 
associated with p  is 0. 

 
 The first step is to simplify the expression as much as possible before proceeding.  We 
note that p  is right next to u , so we can immediately simplify up um .  Unfortunately, the 

p  is not adjacent to v , but we can take advantage of the anti-commutation with 5  to rewrite 

this term as 

        5 51 , 1 , 0 .p v p s p v p s           

Hence the whole expression simplifies to 
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The complex conjugate of this expression is 
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Multiplying this by the previous expression, we have 
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We have pushed together the two factors in anticipation of rewriting it as a trace. 



 We now sum over spins and rewrite the expression as a trace.  We have 
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We now take advantage of the fact that 5  anti-commutes with p  to rewrite this as 
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That’s about as simple as we can make it. 
 
 
4. Calculate the decay rate    if we have scalar instead of pseudoscalar couplings. 
 
 The diagram is identical to the one in Fig. 6-4, but the rules are 
different, and the amplitude is  i ig uv  .  We therefore have 

       2 2i ig ig uv v u g uv v u       

Summing on final state spins and introducing a trace in the usual way, we have 
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It is not hard to see that 
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We therefore have 
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 We then use standard equations to carry us to the final decay rate, namely 
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The initial energy E is split evenly between the two final particles, so they each have energy 
1
2E M , and hence momentum 2 2 2 21 1

4 2 4p M m M m    .  Putting it all together, we 

have 
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