
Solutions to Problems 5b 
 
11. In problem 4.6c, you found all relevant matrix elements for a theory with two particles, 

one of which had twice the charge of the other.  Make up a notation for the two 
particles and their corresponding anti-particles and give me a complete list of Feynman 
rules: propagators and couplings.  Let m1 be the mass of 1  and m2 be the mass of 2 .  

Name the Hamiltonian matrix elements as: 
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 We denote 1  by an open arrow and 2  by a closed arrow.  Then the rules are 

straightforward. 
 For each incoming or outgoing 1  ( 2 ) draw an open (closed) arrow on the left, or an 

open (closed) arrow on the right.  
For each 1  ( 2 ) draw the arrows 

the other direction. 
 Draw all topologically distinct 

diagram connecting the initial states 
to the final state, using the five vertices sketched at right. 

 Conserve four-momentum at all vertices 
 For each vertex, include the factor listed in the diagram above 
 For each interior line with an open arrow, include a factor of 

 2 2
1i p m . 

 For each interior line with a closed arrow, include a factor of 

 2 2
2i p m . 

 Multiply all factors for each diagram.  Then add the contribution from all diagrams. 
 
 
 
12. Using the Feynman rules from problem 11, calculate the decay rate for 2 1 1    in 

this theory.  What inequality must be true for this decay to occur?  Can the 1  particle 

be unstable in this theory? 
 
 There is only one diagram, denoted *ig  in the previous list of Feynman rules, and the 

Feynman amplitude is *i ig  .  We have identical particles in the final state, so this will 
introduce a factor of ½ into the answer.  We therefore have 
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The initial mass m2 is split between the two final state particles, and therefore each one has 

energy 1
22 m  and momentum 2 21

2 14p m m  .  Substituting this in, we have 
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This decay is only possible if 2 12m m . 

 Because of charge conservation, any 1  decay must have at least one 1  or *
1  particle 

in the final state.  Therefore, the final state will always be heavier than the initial state, which is 
impossible. 
 
 
13. Using the Feynman rules from problem 11, calculate the cross-section * *

2 1 2 1    .  Is 

there any chance that there will be resonance? 
 
 We arbitrarily name the initial state momenta p and k, and 
then the final state momenta p  and k  .  The relevant Feynman 
diagrams are sketched at right.  The internal momentum for the 
first diagram is p k .  The Feynman amplitude for these two 
processes together is then just 
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We have taken advantage of the fact that since the initial momenta are p and k, we have 

 2
s p k  , which is independent of angle.  We then find the cross-section using 
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It is a little tricky to note that since the final two masses match the initial two masses, we must 
have the magnitude of the final momenta match that of the initial momenta in the cm frame, 
since this makes the energy work out.  We note also that 2

cms E , and the integral is independent 

of angle, so we conclude 
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This answer could be rewritten in terms of other variables, such as the magnitude of the 
momenta, but this form is the simplest.  We note that resonance would occur whenever 

1 cm p km s E E E    , but 2 2
1 1pE m m  p , so resonance is never a problem. 
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