Solutions to Problems 4a

1. Three fermions would be described as $|a, b, c\rangle$, where we have combined the type, momentum and spin indices into a single letter. Show how all six orderings of the three states are related to each other.

When you exchange any pair of states, you get a minus sign for fermions. It then isn't hard to see that

$$
|a, b, c\rangle=|b, c, a\rangle=|c, a, b\rangle=-|b, a, c\rangle=-|c, b, a\rangle=|a, c, b\rangle .
$$

3. Write down all nine (eight plus the original one) matrix elements that correspond to the coupling λ_{1} related by the anti-particle property. Also, draw all nine corresponding diagrams akin to Fig. 4-2 for this interaction.

$$
\begin{aligned}
& \langle 0| \mathcal{H}\left|\psi \psi \psi^{*} \psi^{*}\right\rangle=\langle\psi| \mathcal{H}\left|\psi \psi \psi^{*}\right\rangle=\langle\psi \psi| \mathcal{H}|\psi \psi\rangle= \\
& \left\langle\psi^{*}\right| \mathcal{H}\left|\psi \psi^{*} \psi^{*}\right\rangle=\left\langle\psi \psi^{*}\right| \mathcal{H}\left|\psi \psi^{*}\right\rangle=\left\langle\psi \psi \psi^{*}\right| \mathcal{H}|\psi\rangle= \\
& \left\langle\psi^{*} \psi^{*}\right| \mathcal{H}\left|\psi^{*} \psi^{*}\right\rangle=\left\langle\psi \psi^{*} \psi^{*}\right| \mathcal{H}\left|\psi^{*}\right\rangle=\left\langle\psi \psi \psi^{*} \psi^{*}\right| \mathcal{H}|0\rangle=\lambda_{1}
\end{aligned}
$$

The corresponding pictures are below.

5. Argue that $h, \lambda_{1}, \lambda_{2}$, and λ_{3} in eqs. (4.22) and (4.23) are constants, and they are all real.

For h, it is pretty easy to see that $h=\langle 0| \mathcal{H}|\phi \phi \phi\rangle$ has dimensions of mass to the plus one, and therefore it contains at most only a constant term and a term linear in the momentum. But you can't make a Lorentz invariant quantity that is linear in the momentum, so it must be a constant. For $\lambda_{1}=\langle 0| \mathcal{H}\left|\psi \psi \psi^{*} \psi^{*}\right\rangle, \lambda_{2}=\langle 0| \mathcal{H}\left|\psi \psi^{*} \phi \phi\right\rangle$ and $\lambda_{3}=\langle 0| \mathcal{H}|\phi \phi \phi \phi\rangle$, they have dimensions of mass to the zeroth, and hence they contain at most a constant term, and hence are constant.

We then use the Hermitian property to move all the particles to the other side, then use the anti-particle property to move them back, and we find

$$
\begin{aligned}
& h^{*}=\langle\phi \phi \phi| \mathcal{H}|0\rangle=\langle 0| \mathcal{H}|\phi \phi \phi\rangle=h, \\
& \lambda_{1}^{*}=\left\langle\psi \psi \psi^{*} \psi^{*}\right| \mathcal{H}|0\rangle=\langle 0| \mathcal{H}\left|\psi \psi \psi^{*} \psi^{*}\right\rangle=\lambda_{1}, \\
& \lambda_{2}^{*}=\left\langle\psi \psi^{*} \phi \phi\right| \mathcal{H}|0\rangle=\langle 0| \mathcal{H}\left|\psi \psi^{*} \phi \phi\right\rangle=\lambda_{2}, \\
& \lambda_{3}^{*}=\langle\phi \phi \phi \phi| \mathcal{H}|0\rangle=\langle 0| \mathcal{H}|\phi \phi \phi \phi\rangle=\lambda_{3} .
\end{aligned}
$$

Hence they are all real as well.

