Solutions to Problems 2b

7. [10] Suppose an electron/positron collider collides beams with energies E_{1} and E_{2} head on. What is s ? Treat the electron and positrons as massless. If the BABAR experiment is trying to create the $\Upsilon(4 s)$ resonance with mass $M=10.58 \mathrm{GeV}$ by colliding electrons with energy $E_{1}=9.00 \mathrm{GeV}$ electrons, what energy must the positrons be?

To make things simple, let's collide them coming in on the x^{3}-axis. Then since they are being treated as massless, the momenta are equal to the energies. Hence the four-momenta are

$$
p_{1}=\left(E_{1}, 0,0, E_{1}\right), \quad p_{2}=\left(E_{2}, 0,0,-E_{2}\right) .
$$

The total initial momentum and s are given by

$$
\begin{gathered}
p_{1}+p_{2}=\left(E_{1}+E_{2}, 0,0, E_{1}-E_{2}\right), \\
s=\left(p_{1}+p_{2}\right)^{2}=\left(E_{1}+E_{2}\right)^{2}-\left(E_{1}-E_{2}\right)^{2}=E_{1}^{2}+2 E_{1} E_{2}+E_{2}^{2}-E_{1}^{2}+2 E_{1} E_{2}-E_{2}^{2}=4 E_{1} E_{2} .
\end{gathered}
$$

To create the $\Upsilon(4 s)$ resonance, we must have sufficient energy, so that $s=M^{2}$. We therefore have

$$
E_{2}=\frac{s}{4 E_{1}}=\frac{M^{2}}{4 E_{1}}=\frac{(10.58 \mathrm{GeV})^{2}}{4(9.00 \mathrm{GeV})}=3.11 \mathrm{GeV}
$$

8. [10] A particle of mass M decays to two particles. Find a general formula for the magnitude of the final three-momentum:
(a) [5] If the mass of each final particle is m;
(b) [5] If the mass of one final particle is m and the other is 0 ; and
(c) If the mass of the final particles are m_{1} and m_{2}, and check that it leads to the correct results for parts (a) and (b).

Let the momenta of the initial particle be p and let the momenta of the final particles be p_{1} and p_{2}. Then conservation of momentum tells us that $p=p_{1}+p_{2}$. We rearrange this to $p-p_{1}=p_{2}$, and then square it.

$$
p_{2}^{2}=\left(p-p_{1}\right)^{2}, \quad m_{2}^{2}=p^{2}-2 p \cdot p_{1}+p_{1}^{2}, \quad m_{2}^{2}=M^{2}-2 p \cdot p_{1}+m_{1}^{2} .
$$

We now write out the explicit form of the initial momentum and the momentum p_{1}, which gives us

$$
p=(M, 0,0,0) \quad \text { and } \quad p_{1}=\left(E_{1}, p_{1} \sin \theta \cos \phi, p_{1} \sin \theta \sin \phi, p_{1} \cos \theta\right), \quad p \cdot p_{1}=M E_{1}-0=M E_{1} .
$$

Substituting this in then give us

$$
\begin{aligned}
& m_{2}^{2}=M^{2}-2 M E_{1}+m_{1}^{2}, \\
& E_{1}=\frac{M^{2}+m_{1}^{2}-m_{2}^{2}}{2 M}
\end{aligned}
$$

We can now quickly work out the answers to each of the parts. For part (a), $m_{1}=m_{2}=m$, and this simplifies to $E_{1}=\frac{1}{2} M$, and we then find the momentum from

$$
p_{1}=\sqrt{E_{1}^{2}-m_{1}^{2}}=\sqrt{\frac{1}{4} M^{2}-m^{2}} .
$$

For part (b), we can pick the first particle to be massless, so we have

$$
p_{1}=E_{1}=\frac{M^{2}-m^{2}}{2 M} .
$$

For part (c) we simply start with the most general expression and deal with the resulting mess.

$$
\begin{aligned}
& p_{1}^{2}=E_{1}^{2}-m_{1}^{2}=\left(\frac{M^{2}+m_{1}^{2}-m_{2}^{2}}{2 M}\right)^{2}-m_{1}^{2}=\frac{1}{4 M^{2}}\binom{M^{4}+m_{1}^{4}+m_{2}^{4}+2 M^{2} m_{1}^{2}}{-2 M^{2} m_{2}^{2}-2 m_{1}^{2} m_{2}^{2}}-\frac{1}{4 M^{2}}\left(4 m_{1}^{2} M^{2}\right), \\
& p_{1}=\frac{1}{2 M} \sqrt{M^{4}+m_{1}^{4}+m_{2}^{4}-2 M^{2} m_{1}^{2}-2 M^{2} m_{2}^{2}-2 m_{1}^{2} m_{2}^{2}} .
\end{aligned}
$$

Since it wasn't assigned, I'm not going to show how it simplifies to the expressions we found before.
9. [10] For any process where two particles of momenta p_{1} and p_{2} collide to make two final particles with momenta p_{3} and p_{4}, define the Mandelstam variables by

$$
s=\left(p_{1}+p_{2}\right)^{2}=\left(p_{3}+p_{4}\right)^{2}, \quad t=\left(p_{1}-p_{3}\right)^{2}=\left(p_{2}-p_{4}\right)^{2}, \quad u=\left(p_{1}-p_{4}\right)^{2}=\left(p_{2}-p_{3}\right)^{2} .
$$

Show that $s+t+u$ is a constant, and determine it in terms of the masses $m_{i}^{2}=p_{i}^{2}$.

The expressions given are all equal to each other since we have, from conservation of four-momentum, $p_{1}+p_{2}=p_{3}+p_{4}$. If you rearrange this in various ways and square it, you can prove all the pairs match. We square these expressions out to yield

$$
\begin{aligned}
& s=m_{1}^{2}+m_{2}^{2}+2 p_{1} \cdot p_{2}=m_{3}^{2}+m_{4}^{2}+2 p_{3} \cdot p_{4}, \\
& t=m_{1}^{2}+m_{3}^{2}-2 p_{1} \cdot p_{3}=m_{2}^{2}+m_{4}^{2}-2 p_{2} \cdot p_{4}, \\
& u=m_{1}^{2}+m_{4}^{2}-2 p_{1} \cdot p_{4}=m_{2}^{2}+m_{3}^{2}-2 p_{2} \cdot p_{3} .
\end{aligned}
$$

Now, it is not obvious how to proceed, but the quickest way is to take the conservation of momentum rule and solve it for any one of the momenta, say $p_{4}=p_{1}+p_{2}-p_{3}$. Squaring,

$$
\begin{aligned}
p_{4}^{2} & =\left(p_{1}+p_{2}-p_{3}\right)^{2}, \\
m_{4}^{2} & =m_{1}^{2}+m_{2}^{2}+m_{3}^{2}+2 p_{1} \cdot p_{2}-2 p_{1} \cdot p_{3}-2 p_{2} \cdot p_{3} \\
& =m_{1}^{2}+m_{2}^{2}+m_{3}^{2}+\left(s-m_{1}^{2}-m_{2}^{2}\right)-\left(m_{1}^{2}+m_{3}^{2}-t\right)-\left(m_{2}^{2}+m_{3}^{2}-u\right) \\
& =s+t+u-m_{1}^{2}-m_{2}^{2}-m_{3}^{2}, \\
s+t+u & =m_{1}^{2}+m_{2}^{2}+m_{3}^{2}+m_{4}^{2} .
\end{aligned}
$$

10. [15] The neutral Kaon system has two particles $\left|K_{0}\right\rangle$ and $\left|\bar{K}_{0}\right\rangle$. These particles are not mass eigenstates; they are related to mass eigenstates by

$$
\left|K_{0}\right\rangle=\frac{1}{\sqrt{2}}\left(\left|K_{1}\right\rangle+\left|K_{2}\right\rangle\right), \quad\left|\bar{K}_{0}\right\rangle=\frac{1}{\sqrt{2}}\left(\left|K_{1}\right\rangle-\left|K_{2}\right\rangle\right) .
$$

These are eigenstate of the Hamiltonian, with energies $H\left|K_{1}\right\rangle=M_{1}\left|K_{1}\right\rangle$ and $H\left|K_{2}\right\rangle=M_{2}\left|K_{2}\right\rangle$. Suppose at $t=0$, we have $|\Psi(t=0)\rangle=\left|K_{0}\right\rangle$. What is $|\Psi(t)\rangle$ at all times? At time \boldsymbol{t}, the particle is measured to see if it is a $\left|K_{0}\right\rangle$ or $\left|\bar{K}_{0}\right\rangle$. What is the probability of each of these? If $M_{1}-M_{2}=3.484 \times 10^{-6} \mathrm{eV}$, at what time \boldsymbol{t} will the particle first be $\mathbf{1 0 0 \%}\left|\bar{K}_{0}\right\rangle$?

The first step we need to do is to write the initial state in terms of the Hamiltonian eigenstates. This is pretty easy. We have

$$
|\Psi(t=0)\rangle=\left|K_{0}\right\rangle=\frac{1}{\sqrt{2}}\left(\left|K_{1}\right\rangle+\left|K_{2}\right\rangle\right) .
$$

Since the particles are at rest, these have energies $E_{i}=M_{i}$. Then using equation (2.43), the wave function at arbitrary time is given by

$$
|\Psi(t)\rangle=\frac{1}{\sqrt{2}}\left(\left|K_{1}\right\rangle e^{-i M_{1} t}+\left|K_{2}\right\rangle e^{-i M_{2} t}\right) .
$$

So far so good. We now want to know what the probability is at a later time that this is in the state $\left|\bar{K}_{0}\right\rangle$. This is given by

$$
\begin{aligned}
P\left(\bar{K}_{0}\right) & =\left|\left\langle\bar{K}_{0} \mid \Psi(t)\right\rangle\right|^{2}=\left|\frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}}\left(\left\langle K_{1}\right|-\left\langle K_{2}\right|\right)\left(\left|K_{1}\right\rangle e^{-i M_{1} t}+\left|K_{2}\right\rangle e^{-i M_{2} t}\right)\right|^{2} \\
& =\frac{1}{4}\left|e^{-i M_{1} t}-e^{-i M_{2} t}\right|^{2}=\frac{1}{4}\left(e^{-i M_{1} t}-e^{-i M_{2} t}\right)^{*}\left(e^{-i M_{1} t}-e^{-i M_{2} t}\right) \\
& =\frac{1}{4}\left(e^{i M_{1} t}-e^{i M_{2} t}\right)\left(e^{-i M_{1} t}-e^{-i M_{2} t}\right)=\frac{1}{4}\left(1-e^{i M_{2} t-i M_{1} t}-e^{i M_{1} t-i M_{2} t}+1\right) \\
& =\frac{1}{4}\left(2-2 \cos \left[\left(M_{2}-M_{1}\right) t\right]\right)=\frac{1}{2}-\frac{1}{2} \cos \left[\left(M_{1}-M_{2}\right) t\right] .
\end{aligned}
$$

It is not hard to show that similarly, $P\left(K_{0}\right)=\frac{1}{2}+\frac{1}{2} \cos \left[\left(M_{1}-M_{2}\right) t\right]$. To get $P\left(\bar{K}_{0}\right)=1$, we need the cosine to be -1 , which first occurs at π. We therefore have

$$
t=\frac{\pi}{M_{1}-M_{2}}=\frac{\pi\left(6.592 \times 10^{-16} \mathrm{eV} \cdot \mathrm{~s}\right)}{3.484 \times 10^{-6} \mathrm{eV}}=5.94 \times 10^{-10} \mathrm{~s}=0.594 \mathrm{~ns} .
$$

You may well wonder how such short distances are measured, but the particles are often moving relativistically, so we actually measure the distance and deduce the time.

