Solutions to Problems 1

2. It is possible that the universe has small extra dimensions. If so, we should be able to detect them if we use particles with wavelength shorter than the scale L of the extra dimension. Having performed experiments with 4 TeV protons without seeing hints of extra dimensions, estimate the maximum size this extra dimension might be in meters.

We simply use the relationship $\lambda p=2 \pi \hbar=2 \pi$. First we need to find the momentum, which for relativistic neutrinos is effectively the same as the energy. Hence

$$
\lambda=\frac{2 \pi}{p}=\frac{2 \pi(0.197 \mathrm{GeV} \cdot \mathrm{fm})}{4000.0 \mathrm{GeV}}=3.09 \times 10^{-4} \mathrm{fm}=3.09 \times 10^{-19} \mathrm{~m}
$$

I have no idea exactly what the real limit is, but obviously it is pretty short.
5. By July 4, 2012, approximately $5 \mathbf{f b}^{-1}$ of integrated lumonisity at $\sqrt{s}=8 \mathrm{TeV}$ had been analyzed by the CMS and ATLAS detectors. How many Higgs particles were produced? The main signal seen was from the process $H \rightarrow \gamma \gamma$. The branching ratio for this decay is about $\mathbf{0 . 2 5 \%}$. How many $H \rightarrow \gamma \gamma$ events should have been seen by each experiment?

We need the cross-section, which we get from the link in the previous problem. Looking at http://arxiv.org/abs/1012.0530, we see from table 3 that the cross section for Higgs production at $\sqrt{s}=8 \mathrm{TeV}$ for a mass of 125 GeV is about 19.81 pb and for a mass of 130 GeV is about 18.34 pb . The numbers look vaguely linear in this region, so using a linear fit, we estimate at 126 GeV the cross-section is about 19.52 pb . We multiply this by the integrated luminosity to obtain

$$
N_{H}=\sigma_{H} \int L d t=(19.52 \mathrm{pb})\left(5.00 \mathrm{fb}^{-1}\right)=97.6 \frac{10^{-12} \mathrm{~b}}{10^{-15} \mathrm{~b}} \approx 97,600
$$

According to table 6 , the branching ratio to photons is not 0.25%, but 0.23%, so the number of decays is

$$
N(H \rightarrow \gamma \gamma)=N_{H} B R(H \rightarrow \gamma \gamma)=(97,600)(0.0023)=224 .
$$

This is the approximate number of events expected in each of the two detectors.
7. Look up the total lifetime of the π^{+}and K^{+}mesons (summary tables, mesons). What would the rate Γ in GeV be? Then look up the branching ratios in each case to decay to $\mu^{+} v_{\mu}$. Find the partial rates $\Gamma\left(\pi^{+} \rightarrow \mu^{+} v_{\mu}\right)$ and $\Gamma\left(K^{+} \rightarrow \mu^{+} v_{\mu}\right)$ in each case, and their ratio.

According to the particle data book, $\tau_{\pi}=2.60 \times 10^{-8} \mathrm{~s}$ and $\tau_{K}=1.23 \times 10^{-8} \mathrm{~s}$. As noted in the text, $\Gamma=\tau^{-1}$, so we have

$$
\begin{aligned}
& \Gamma_{\pi}=\tau_{\pi}^{-1}=\frac{\hbar}{\tau_{\pi}}=\frac{6.582 \times 10^{-16} \mathrm{eV} \cdot \mathrm{~s}}{2.60 \times 10^{-8} \mathrm{~s}}=2.53 \times 10^{-8} \mathrm{eV}=2.53 \times 10^{-17} \mathrm{GeV}, \\
& \Gamma_{K}=\tau_{K}^{-1}=\frac{\hbar}{\tau_{K}}=\frac{6.582 \times 10^{-16} \mathrm{eV} \cdot \mathrm{~s}}{1.238 \times 10^{-8} \mathrm{~s}}=5.32 \times 10^{-8} \mathrm{eV}=5.32 \times 10^{-17} \mathrm{GeV} .
\end{aligned}
$$

The branching ratio to $\mu^{+} v_{\mu}$ is 99.99% for the pion and 63.55% for the kaon. We multiply by these numbers to get the partial decay rates:

$$
\begin{aligned}
& \Gamma\left(\pi^{+} \rightarrow \mu^{+} v_{\mu}\right)=\Gamma_{\pi} B R\left(\pi^{+} \rightarrow \mu^{+} v_{\mu}\right)=\left(2.53 \times 10^{-17} \mathrm{GeV}\right)(0.9999)=2.53 \times 10^{-17} \mathrm{GeV}, \\
& \Gamma\left(K^{+} \rightarrow \mu^{+} v_{\mu}\right)=\Gamma_{K} B R\left(K^{+} \rightarrow \mu^{+} v_{\mu}\right)=\left(5.32 \times 10^{-17} \mathrm{GeV}\right)(0.6355)=3.38 \times 10^{-17} \mathrm{GeV}, \\
& \frac{\Gamma\left(\pi^{+} \rightarrow \mu^{+} v_{\mu}\right)}{\Gamma\left(K^{+} \rightarrow \mu^{+} v_{\mu}\right)}=\frac{2.53}{3.38}=0.749 .
\end{aligned}
$$

As we will later realize, the denominator is larger overwhelmingly because of the higher mass of the kaon.
8. Find a dimensionless combination of $\boldsymbol{e}, \varepsilon_{0}, \hbar$ and c. Then, setting $\varepsilon_{0}=\hbar=c=1$, find the dimensionless value of the fundamental charge e.

The values of these constants are

$$
\begin{aligned}
& e=1.602 \times 10^{-19} \mathrm{C}, \\
& \varepsilon_{0}=8.854 \times 10^{-12} \mathrm{C}^{2} \mathrm{~s}^{2} / \mathrm{m}^{3} / \mathrm{kg}, \\
& \hbar=1.055 \times 10^{-34} \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s} \\
& c=2.998 \times 10^{8} \mathrm{~m} / \mathrm{s} .
\end{aligned}
$$

We note that e has C in it, and ε_{0} has C^{2}, so if we square the former and divide by the latter, the C will cancel out. This will leave kg in the numerator, but if we divide by \hbar, that will go away, and it isn't hard to see that if you then divide by c, you get something dimensionless. So we have

$$
\frac{e^{2}}{\varepsilon_{0} \hbar c}=\frac{\left(1.602 \times 10^{-19} \mathrm{C}\right)^{2}}{\left(8.854 \times 10^{-12} \mathrm{C}^{2} \mathrm{~s}^{2} / \mathrm{m}^{3} / \mathrm{kg}\right)\left(1.055 \times 10^{-34} \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s}\right)\left(2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)}=0.09164
$$

The quantity on the right is true in any units, but in particle physics units, the factors in the denominator on the left are 1 , and this formula simplifies to $e^{2}=0.09245$, or taking the square root,

$$
e=\sqrt{0.09164}=0.3027
$$

We could have gotten the same answer starting from the equation on the inside front cover $e^{2} / 4 \pi=1 / 137.04$
9. By using a suitable combination of \hbar and c, write Newton's constant in the form $G_{N}=M_{P}^{n}$, where M_{P} has units of mass or energy, and is called the Planck mass. Determine the integer \boldsymbol{n} and the value of M_{P} in GeV . If a proton collider were operating at $E=M_{P}$ and used $B=10 \mathrm{~T}$ magnets, what would be its radius in light-years?

The relevant constants are

$$
\begin{aligned}
G_{N} & =6.674 \times 10^{-11} \mathrm{~m}^{3} / \mathrm{kg} / \mathrm{s}^{2}, \\
\hbar & =1.055 \times 10^{-34} \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s}, \\
c & =2.998 \times 10^{8} \mathrm{~m} / \mathrm{s} .
\end{aligned}
$$

Let's start by writing it as a mass, which we can do if we get rid of all the meters and seconds. It is clear that G_{N} / \hbar will have only one factor of m in the numerator and one factor of s in the denominator, so if we then divide by c we get

$$
\frac{G_{N}}{\hbar c}=\frac{6.674 \times 10^{-11} \mathrm{~m}^{3} / \mathrm{kg} / \mathrm{s}^{2}}{\left(1.055 \times 10^{-34} \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s}\right)\left(2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)}=2.11 \times 10^{15} \mathrm{~kg}^{-2}
$$

Since it is mass to the minus two, we write it in the form M_{P}^{-2}, so that by definition,

$$
\begin{aligned}
& M_{P}^{-2} \equiv \frac{G_{N}}{\hbar c}=2.11 \times 10^{15} \mathrm{~kg}^{-2}, \\
& M_{P}=\left(2.11 \times 10^{15} \mathrm{~kg}^{-2}\right)^{-1 / 2}=2.177 \times 10^{-8} \mathrm{~kg}
\end{aligned}
$$

In particle physics units, we would write this as $G=M_{P}^{-2}$. We then convert this to an energy by using the conversion $1 \mathrm{~kg}=5.6 \times 10^{26} \mathrm{GeV}$, so

$$
M_{P}=\left(2.177 \times 10^{-8} \mathrm{~kg}\right)\left(5.6 \times 10^{26} \mathrm{GeV} / \mathrm{kg}\right)=1.22 \times 10^{19} \mathrm{GeV}
$$

We can then find how large a collider we need to reach this energy using eq. (1.5). The momentum is effectively the same as the energy, and we are working in units where $c=1$, so

$$
\begin{aligned}
& p=\left(\frac{B}{\mathrm{~T}}\right)\left(\frac{R}{\mathrm{~km}}\right)(299.8 \mathrm{GeV}), \\
& R=\frac{1.22 \times 10^{19}}{299.8 \cdot 10} \mathrm{~km}=4.066 \times 10^{15} \mathrm{~km}=\frac{\left(4.066 \times 10^{15} \mathrm{~km}\right) \mathrm{C}}{\left(2.998 \times 10^{5} \mathrm{~km} / \mathrm{s}\right)\left(3.156 \times 10^{7} \mathrm{~s} / \mathrm{y}\right)} \approx 430 \mathrm{ly} .
\end{aligned}
$$

It is inconceivable we will ever reach this energy without new technology.

14. Perform the following integrals:

(a) $\int_{0}^{\infty} E^{n} \delta\left(E^{2}-\mathbf{p}^{2}-m^{2}\right)$ for arbitrary \mathbf{n}.

The argument of the delta function vanishes at $E=\sqrt{\mathbf{p}^{2}+m^{2}}$, so

$$
\int_{0}^{\infty} E^{n} \delta\left(E^{2}-\mathbf{p}^{2}-m^{2}\right) d E=\left.\frac{E^{n}}{2 E}\right|_{E=\sqrt{\mathbf{p}^{2}+m^{2}}}=\frac{1}{2}\left(\mathbf{p}^{2}+m^{2}\right)^{\frac{1}{2}(n-1)}
$$

(b) $\int_{0}^{\infty} d E_{1} \int_{0}^{\infty} d E_{2} \theta\left(\frac{1}{2} m-E_{1}\right) \theta\left(\frac{1}{2} m-E_{2}\right) \theta\left(E_{1}+E_{2}-\frac{1}{2} m\right)\left(\frac{1}{2} m^{2} E_{1}-m E_{1}^{2}\right)$

As we argued in class, the first two Heaviside functions restrict the upper limit on the energy integrals to each be $\frac{1}{2} m$, and the third one demands that $E_{1}+E_{2}>\frac{1}{2} m$. If we let the inner integral be the E_{2} integral, then we have

$$
\begin{aligned}
& \int_{0}^{\infty} d E_{1} \int_{0}^{\infty} d E_{2} \theta\left(\frac{1}{2} m-E_{1}\right) \theta\left(\frac{1}{2} m-E_{2}\right) \theta\left(E_{1}+E_{2}-\frac{1}{2} m\right)\left(\frac{1}{2} m^{2} E_{1}-m E_{1}^{2}\right) \\
& =\int_{0}^{\frac{1}{2} m} d E_{1} \int_{\frac{1}{2} m-E_{1}}^{\frac{1}{2} m} d E_{2}\left(\frac{1}{2} m^{2} E_{1}-m E_{1}^{2}\right)=\int_{0}^{\frac{1}{2} m} d E_{1}\left(\frac{1}{2} m^{2} E_{1}-m E_{1}^{2}\right) E_{2} \frac{2_{2}^{2} m-E_{1}}{\frac{1}{2} m} \\
& =\int_{0}^{\frac{1}{2} m} d E_{1}\left(\frac{1}{2} m^{2} E_{1}^{2}-m E_{1}^{3}\right)=\left.\left(\frac{1}{6} m^{2} E_{1}^{3}-\frac{1}{4} m E_{1}^{4}\right)\right|_{0} ^{\frac{1}{2} m}=\frac{1}{48} m^{5}-\frac{1}{64} m^{5}=\frac{1}{192} m^{5} .
\end{aligned}
$$

(c) $\int\left[\left(1-2 \sin ^{2} \theta_{W}\right)^{2} E^{4}+\sin ^{4} \theta_{W} E^{4}(1+\cos \theta)^{2}\right] d \Omega \quad$ (note: θ_{W} is a constant)

There is an integral $\int_{0}^{2 \pi} d \phi=2 \pi$, which is easy, and an integral over θ, which I like to do by changing to $z=\cos \theta$

$$
\begin{aligned}
& \int\left[\left(1-2 \sin ^{2} \theta_{W}\right)^{2} E^{4}+\sin ^{4} \theta_{W} E^{4}(1+\cos \theta)^{2}\right] d \Omega \\
& =2 \pi E^{4} \int_{-1}^{1} d z\left[\left(1-2 \sin ^{2} \theta_{W}\right)^{2}+\sin ^{4} \theta_{W}\left(1+2 z+z^{2}\right)\right] \\
& =2 \pi E^{4}\left[\left(1-2 \sin ^{2} \theta_{W}\right)^{2} z+\sin ^{4} \theta_{W}\left(z+z^{2}+\frac{1}{3} z^{3}\right)\right]_{-1}^{1} \\
& =2 \pi E^{4}\left[2\left(1-2 \sin ^{2} \theta_{W}\right)^{2}+\sin ^{4} \theta_{W}\left(2+0+\frac{2}{3}\right)\right]=4 \pi E^{4}\left(1-4 \sin ^{2} \theta_{W}+\frac{16}{3} \sin ^{4} \theta_{W}\right) .
\end{aligned}
$$

It is unclear what further simplification is desirable.
(d) $\int \frac{g^{4} p \cos ^{2} \theta}{128 \pi^{2} E\left(E^{2}-p^{2} \cos ^{2} \theta\right)} d \Omega$

$$
\begin{aligned}
& \int \frac{g^{4} p \cos ^{2} \theta}{128 \pi^{2} E\left(E^{2}-p^{2} \cos ^{2} \theta\right)} d \Omega=\frac{2 \pi g^{4}}{128 \pi^{2} E p} \int_{-1}^{1} \frac{p^{2} \cos ^{2} \theta d \cos \theta}{E^{2}-p^{2} \cos ^{2} \theta} \\
& =\frac{g^{4}}{32 \pi E p} \int_{0}^{1}\left[-1+\frac{E^{2}}{E^{2}-p^{2} \cos ^{2} \theta}\right] d \cos \theta=\frac{g^{4}}{32 \pi E p}\left[-1+\frac{1}{2} \int_{0}^{1}\left(\frac{E d \cos \theta}{E+p \cos \theta}+\frac{E d \cos \theta}{E-p \cos \theta}\right)\right] \\
& =\frac{g^{4}}{32 \pi E p}\left\{-1+\frac{E}{2 p}[\ln (E+p \cos \theta)-\ln (E-p \cos \theta)]_{0}^{1}\right\}=\frac{g^{4}}{32 \pi p^{2}}\left\{\frac{1}{2} \ln \left(\frac{E+p}{E-p}\right)-\frac{p}{E}\right\} .
\end{aligned}
$$

The logarithm term can be written more succinctly as $\tanh ^{-1}(p / E)$ if we want.

