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Part I:  Short Answer [50 points] 
For each of the following, give a short answer (2-3 sentences, or a formula). [5 points each] 
 
1. Explain qualitatively (a) how we accelerate particles to high energy, and (b) how we get 

them to go in a circle.  Equations are nice but not necessary. 
 
 Electromagnetic forces are used to accelerate and guide particles, using the Lorentz force 
equation  q  F E v B .  Electric field accelerate them, increasing their energy, while 

magnetic fields guide them in a circle. 
 
 
2. Suppose I were practicing archery, and I was trying to hit spherical water balloons of 

radius R with small arrows.  What would be the cross-section for these targets? 
 
 The cross-section is the area as viewed from one direction.  Since a sphere has the 
silhouette of a circle, it will have cross-section area of 2R  
 
 
3. Which of the following equations are manifestly Lorentz covariant? 

(a) p p p p   
    - Yes 

(b) 1
2F F    - No, indices can’t be repeated down 

(c) p q p q 
  - Yes 

(d) p m   - Unmatched index 

(e) 
    - Can’t match up with down 

 
4. Explain physically or using equations what it means if your theory respects parity 
 
 If parity is respected, the laws of physics will look the same if you see it in a mirror.  
Mathematically, the easiest way to impose parity is to let x x . 
 
 
5. Explain briefly, according to the Dirac theory, why it is that positive energy electrons 

do not normally “decay” and become negative energy electrons. 
 
 According to the Dirac theory, all these negative energy states are already filled, and 
therefore the electron can’t “fall down” to such a state, by the Pauli exclusion principle. 



6. The unstable Z-boson is listed as having a mass of 91.19 GeV.  This implies that for a Z 
at rest, , 0 , 0H Z E Z  p p  with 91.19 GeVE  .   Explain why we know for sure 

that, in fact, the Z-boson is not an eigenstate of the full Hamiltonian. 
 

 An exact eigenstate evolves according to    0iEtt e   .  If the Z-boson were an 

exact eigenstate of the full Hamiltonian, then it would never decay, but the problem says that it is 
unstable. 
 
 

7.  In weak interactions, you can get non-zero matrix elements of the form 0 , ,W u q , 

where W- is the W-boson with charge  –1, u is the up quark with charge +2/3, and q  is 
an anti-quark of some sort.  Tell me the charge of q , and the charge of the 
corresponding quark q. 

 
 Charge must be conserved, so the sum of the charges on the right must add to zero.  If we 
make x the charge of the unknown anti-quark, then 2

30 1 x    , so 1
3x   .  The 

corresponding quark will have charge 1
3 . 

 
 
8. Suppose you are measuring the cross-section for some process, and you get very close to 

the mass of an intermediate particle (resonance).  What happens, qualitatively, to the 
cross-section? 

 
 When you get close to resonance, there will be a very large increase in the cross-section. 
 
 
9. When you have a resonance, how can you tell from a graph of cross-section vs. energy 

what the decay rate or width   is for that intermediate particle? 
 
 The width   is approximately the full width at half maximum of the resonance.  That is, 
find the highest point in the cross section, find the places where the curve is half the peak, and 
take the difference in energies of those two places.  That is (approximately)  . 
 
 
10. In the Feynman diagrams at right, the arrow is a 

fermion, and the solid line is a boson.  Would you 
add or subtract the contributions to the Feynman 
amplitude, and why? 

 
 Because the two diagrams differ by the exchange of an external fermion line, you would 
subtract them. 
  



Part II:  Calculation [150 points] 
Each problem has its corresponding point value marked.  Solve the equations on separate paper. 
 
11. [15] According to the particle data book, the K+ meson has a mass of 493.7 MeV and a 

mean lifetime of 81.238 10  s     
(a) If a K+ meson had an energy of E = 2350 MeV, how long would it last and how far 

would it go if it lasts one average lifetime? 
 
 We start with the equation 
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We first see that 

 
2350 MeV

4.76 .
493.7 MeV

E

m
     

We then get the amount of time it actually lasts as 

 8 84.76 1.238 10  s 5.89 10  s .t          

 We will need the velocity, which we can find pretty readily from 
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Distance traveled is then velocity times time, which works out to 

   8 80.9777 5.89 10  s 2.998 10  m/s 17.3 m .d vt       

 
(b) What is the width   of a K+, in eV? 

 
 The width is given by 
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(c) The branching ratio for 0K     is 20.7%. What is  0K     , in eV? 

 
 The partial width can then be computed from 

         0 0 8 80.207 5.317 10  eV 1.100 10  eV .K BR K K                   



12. [15] The differential cross-section for e e       at high energies is given by  

  
2

2
2

1 cos
16

d

d E

   


 

(a) Calculate the total cross-section 
 
 We simply integrate this over angles to yield 
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(b) Convert to barns if E = 10.0 GeV.  Use 1 137  . 

 
 We have 

 
 

 

2

10
2 22

0.197 GeV fm b
2.165 10 b 0.2165 nb .

100 fm3 137 10.0 GeV


 
    


 

 
(c) If an e e   collider is operating with each beam at E = 10.0 GeV at a luminosity of 

1 15.67 b sL    , how many     pairs will it make in one day? 
 
 The number produced is 

         10 1 1 62.165 10  b 5.67 b s 10  b/b 24 h 60 m/h 60 s/m 106 .N Ldt             

 
13. [10] A collision process takes the form        1 2 3 4A p B p C p D p , where the masses 

of the four particles are m1, m2, m3, and m4 respectively. Show that 2 4p p  can be 

written in terms of 1 3p p . 

 
 By conservation of four-momentum, we know that 1 2 3 4 .p p p p    Rearranging this 

slightly, we have 1 3 4 2 .p p p p     Squaring this expression, we have 
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14. [20] Consider the process        *
1 2 1 2p p k k     in the center of mass frame.  Let 

the mass of the’s be m and the mass of the ’s be M. 
(a) Assume the initial particles have energy E in the center of mass frame.  Tell me the 

energy of the final particles, and the magnitude of the momentum of the initial and 
final particles.  You must give arguments for your answers, not just the answers. 

 
 Since we are in the center of mass frame, the momenta will be equal and opposite.   Since 
the initial particles have equal momenta and equal masses, they will have equal energies E.  The 
total energy 2E will be divided between the two final particles.  Since the final particles have 
matching momenta and matching masses, they will also have equal energies.  Hence each of 
them gets energy E. 
 The momenta can be found by the fact that 2 2 2E m p , so we have 

 2 2 2 2
1 2 1 2, .p E m k E M       p p k k  

 
(b) Write out explicitly all four components of all four momenta.  You may assume the 

initial particles are coming in along the 3x  axes.  The final particles will go in an 
arbitrary direction. 

 
 We simply include factors corresponding to the various directions, and write 

 
   
   

1 1

2 2

,0,0, , , sin cos , sin sin , cos ,

,0,0, , , sin cos , sin sin , cos .

p E p k E k k k

p E p k E k k k

    

    

 

     
 

 
(c) Calculate all six dot-products of initial and final momenta explicitly, i.e., tell me 

 1 2 1 2 1 1 1 2 2 1 2 2, , , , , .p p k k p k p k p k p k       

 
 These are straightforward: 
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15. [15] A high energy anti-neutrino  0m   with energy E collides with an electron at rest 

( 0.511 MeVem  ). 

(a) Find a simple formula for the center of mass energy squared s in terms of E and me. 
 
 If we let p  and ep  be the two momenta, then we have 

  2 2 2 22 0 2 .e e e e es p p p p p p m m E            

We found the dot product by using the fact that 

    ,0,0, , ,0,0,0 , .e e e ep E E p m p p m E      

 
(b) How big must E be to produce a W boson ( 80.40 GeVWm  ) via the process 

ee W   ? 

 
 For the process, we need 2 2

W Ws p M  .  Solving for the energy, we have 
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It’s not that often we get to use PeV. 
 
 
16. [25] Consider a renormalizable theory with two charged spin 0 particles, 1  with 

charge +1, and 3  with charge +3.  They are not equivalent to their anti-particles *
1  

and *
3 . 

(a) Write down all possible renormalizable matrix elements of the form 0 X , 

where X has more than two particles, and figure out which ones must be real. 
 
 To be renormalizable, there must be no more than four particles.  The total charge must 
be zero.  One way to do this is to have exactly equal numbers of 1  with *

1 , and 3  with *
3 , 

which yields the following three matrix elements: 

 * * * * * *
1 1 1 1 1 1 3 1 3 2 3 3 3 3 30 , 0 , 0 .                   

We can use the Hermitian and anti-particle property to show these are real: 



 

** * * * * * *
1 1 1 1 1 1 1 1 1 1 1 1 1 1

** * * * * * *
2 1 3 1 3 1 3 1 3 1 3 1 3 2

** * * * * * *
3 3 3 3 3 3 3 3 3 3 3 3 3 3

0 0 0 ,

0 0 0 ,

0 0 0 .

             

             

             

   

   

   

  

  

  

 

 We can also try to balance charge by having, say, one extra 3  and cancelling it with a 

bunch of *
1 ’s, or we can do the same thing with an extra *

3  and cancelling it with 1 ’s.  The 

resulting matrix elements we will name as 

 * * * *
3 1 1 1 1 1 1 30 , 0 .g h        

These matrix elements are complex conjugates of each other: 

 
** * * * * * * *

3 1 1 1 3 1 1 1 3 1 1 10 0 0 .g h                

` 
(b) Make up a diagrammatic notation for the particles 1  and 3 .  

Draw all possible vertices for this theory, and give me the 
corresponding factor that should be included for this theory. 

 
 A normal notation would be a single arrow for 1  and a triple 

arrow for 3 , but that’s hard to draw, so I’ll use an open arrow for 1  and 

a closed arrow for 3 .  There are five matrix elements, and hence five 

possible vertices in this theory, as sketched at right. 
 

(c) Consider the scattering *
3 1 1 1   .  Draw the relevant 

Feynman diagram, and give me the relevant Feynman 
amplitude.  Then find the differential and total cross-section, treating all 
particles as massless, if the energy of each of the initial particles is E. 

 
 There is only one tree-level diagram, sketched at right.  The Feynman 
amplitude is i ig  .  We would then proceed to the cross section in the usual way 
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We now integrate over angles, but noting that there are identical particles in the final state, we 
need to throw in a factor of ½ to avoid double counting, so we have 
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17. [25] Working in the full   theory with pseudoscalar couplings, 
sketch all seven tree-level diagrams for the process 

          1 2 1 2 3p p k k k      

 Then, carefully write the Feynman invariant amplitude for two of 
them:  one which does involve the  coupling, and one which does not involve it.  You 
don’t have to do the other diagrams, nor do you have to do anything with the resulting 
amplitudes.  The Feynman rules for the only two allowed vertices are given above. 

 
 The seven relevant diagrams are sketched below 
 
 
 
 
. 
 
Only the last one involves the  coupling.  For the other diagrams, the upper fermion propagator 
has momentum 1 ip k , where ki is the momentum of the  attached to the upper vertex, and the 

lower fermion propagator has momentum 2jk p . The last diagram has a scalar propagator with 

momentum  1 2p p .  Putting it all together, we find the Feynman amplitude is 
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 

           

  

The sum over i and j is over all possible pairs chosen from  1, 2,3 , but picking i j , so six 

terms in all. 
 
 
18. [25] It is possible (though not likely) that one of the decays of the top quark will be  

      1 1 2 2 3, ,t p s b p s h p , 

  where t and b are the top and bottom quark (both fermions) and h+ is a charged scalar.  
Assume the amplitude for this process takes the form 

  2 5 1 ,i u i u     

 where  and  are real constants.  Calculate the decay rate  t bh  .  Assume the 

top quark has mass mt, the bottom quark has mass 0, and the scalar field has mass mh. 
 
 The amplitude can’t be simplified, so we start by finding 

    *

1 5 2 .i u i u    

So the square of the amplitude is 

 
 
 
 

i5g



        2

1 5 2 2 5 1 1 1 5 2 2 5Tri u i u u i u u u i u u i                  

Now, the initial top quark has random spin, so we average over this spin.  For the bottom quark, 
we would sum over spins.  So we are actually interested in 

     
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i p m i p i            

Keeping in mind that 2p  anti-commutes with 5 , this can be rewritten as 
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 Now, from conservation of four-momentum, we know that 1 2 3p p p  .  Rearranging 

this slightly, we have 3 1 2p p p  .  Squaring this, we have 
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Substituting this into our previous expression, we have 

   
1 2

2 2 2 2 21
2

,

.t h
s s

i m m      

 We now proceed to the decay rate, which is given by 
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There are no complications involving the final state particles, so we get a simple factor of 4 .  
There is, however, the complication that we need to figure out what the momentum of the final 
state particles is.  Because we are treating the bottom as massless, this is the same as the energy 
of the bottom.  Since the top quark is at rest,  1 ,0,0,0tp m  , so that 1 2 t bp p m E  .  From our 

previous arguments, we therefore have 
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As mentioned, this is the same as the momentum, so putting it all together, we have 

     
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