Solution Set S

45. Imagine we have an empty universe, so $\rho=0$.
(a) Using the first Friedmann equation, what must be the value of k ? Solve for $a(t)$ as a function of time, choosing the constant of integration so that $a(0)=0$.

The first Friedmann equation is just

$$
\frac{\dot{a}^{2}}{a^{2}}=\frac{8 \pi}{3} G \rho-\frac{k}{a^{2}}
$$

Since the density is zero, the first term on the right vanishes. Since the left side is positive, the remaining term must be positive, and since k can only take the values $k \in\{0, \pm 1\}$, we must have $k=-1$. Substituting in, we have

$$
\frac{\dot{a}^{2}}{a^{2}}=\frac{1}{a^{2}} \quad \Rightarrow \quad \dot{a}^{2}=1 \quad \Rightarrow \quad \frac{d a}{d t}=1 .
$$

Integrating this last equation, and choosing the constant of integration as suggested, we have $a=t$.
(b) Write the full metric. We have just discovered a new metric, different from flat space, with nothing in it! Or have we? Big hint: look at problem set F, problem 16.

The full metric is just

$$
d s^{2}=-\mathrm{d} t^{2}+t^{2}\left[\frac{\mathrm{~d} r^{2}}{1+r^{2}}+r^{2}\left(\mathrm{~d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \phi^{2}\right)\right]
$$

As demonstrated in problem 16, this is really just flat spacetime disguised.
46. Suppose the universe is flat $(k=0)$ and is filled with a fluid of just one type with $\rho \propto a^{-n}$, with $\boldsymbol{n}>\mathbf{0}$. I recommend writing $\frac{8}{3} \pi G \rho=C a^{-n}$, where \boldsymbol{C} is constant.
(a) Using the first Friedmann equation, write a formula of the form $d t=f(a) d a$, where $f(a)$ is a simple formula. Integrate it to get a formula for the age of the universe \boldsymbol{t} in terms of a, defining $t=0$ as the time when $a=0$.

Given that $k=0$, the first Friedmann equation says that

$$
\begin{gathered}
\frac{\dot{a}^{2}}{a^{2}}=\frac{8 \pi}{3} G \rho=C a^{-n} \\
a^{n-2}\left(\frac{d a}{d t}\right)^{2}=C \\
\frac{1}{\sqrt{C}} a^{n / 2-1} d a=d t .
\end{gathered}
$$

We now simply integrate this equation to get

$$
t=\int \frac{1}{\sqrt{C}} a^{n / 2-1} d a=\frac{2}{n} a^{n / 2} \frac{1}{\sqrt{C}}
$$

(b) Using the fact that H_{0} is the current value of \dot{a} / a, find a formula for the current age of the universe just in terms of \boldsymbol{H}_{0} and \boldsymbol{n}.

Substituting into the Friedmann equation today, we see that

$$
\begin{gathered}
H_{0}^{2}=\frac{8 \pi}{3} G \rho_{0}=C a_{0}^{-n / 2}, \\
H_{0}=\sqrt{C} a_{0}^{-n / 2}
\end{gathered}
$$

We note that the combination we need to find the current age of the universe, which is thefore

$$
t_{0}=\frac{2}{n H_{0}} .
$$

(c) The current value of the age of Hubble's constant is $H_{0}=67.7 \mathrm{~km} / \mathrm{s} / \mathrm{Mpc}$. Find the value of H_{0}^{-1}, called the Hubble time, in Gyr.

A Mpc is a million parsecs, and we can look up the units, so we have

$$
H_{0}^{-1}=\frac{\mathrm{s} \cdot \mathrm{Mpc}}{67.7 \mathrm{~km}} \cdot \frac{\mathrm{~km}}{10^{3} \mathrm{~m}} \cdot \frac{10^{6} \mathrm{pc}}{\mathrm{Mpc}} \cdot \frac{3.086 \times 10^{16} \mathrm{~m}}{\mathrm{pc}} \cdot \frac{1 \mathrm{yr}}{3.156 \times 10^{7} \mathrm{~s}}=1.44 \times 10^{10} \mathrm{yr}=14.4 \mathrm{Gyr} .
$$

(d) Assuming we have matter $(n=3)$ or radiation $(n=4)$, based on parts (b) and (c) how old is the universe in each case? Compare to the age of the oldest stars, somewhere around 13 Gyr .

We simply multiply by the factor $\frac{2}{3}$ for matter or $\frac{2}{4}=\frac{1}{2}$ for radiation to yield a total age of 9.60 Gyr for matter or 7.20 Gyr for radiation. Both are substantially less than the age of the oldest stars, around 13 Gyr .

