
Physics 780 – General Relativity 
Solution Set P 

 

40. The Tolman-Oppenheimer-Volkoff equations, 
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generally hard to solve analytically, but we will do so for an idealized situation, which is 
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 and 0ρ  is a 

constant. Comment:  When writing equations by hand, I tend to write p as P so it 
doesn’t look like ρ . 
(a) Find a formula for ( )M r , the integrated mass, for r < R.  What is the total mass 

( )M M R= ? 
 
 The equation for the mass is trivial to integrate, 
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The total mass, of course, is 34
03M Rπρ= . 

 
(b) Rearrange the TOV equation so that the left side has only functions of p in it, and 

the right side has only r in it.  It will look like ( ) ( )f p dp g r dr= . 
 
 We start by substituting and rearranging the equation, so we have 
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(c) Integrate equation (b) to get a relationship between p and r.  Don’t forget the 

constant of integration!  The constant of integration will be chosen here or in part 
(d) so that the pressure at r = R is zero. 

 
 As nasty as this looks, we can integrate it by hand, or we can get a little help from Maple 
or similar tools.  I find it easiest to multiply both sides by 2

03 ρ , because the left side can now be 
cleanly separated into two terms that are easy to integrate: 
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(d) Do some work to solve the result of eq. (c) for the pressure p as a function of r.  The 

terms with G in them can be simplified by eliminating 0ρ  in favor of the total mass 
M and the total radius R. 

 
 We exponentiate both sides to yield 
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The constant k is chosen so that at r = R, the pressure vanishes, and the left side becomes 1/3.  
We therefore rewrite this as 
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We recall that 34
3M Rπ= , so this formula becomes 

 
2 3 3 21

03

0

1 2 2 .
3 1 2 3 2

GMr Rp R GMr
p GM R R R GM

ρ
ρ

−+ −
= =

+ − −
 

We now cross-multiply and solve for p: 
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(e) The pressure should be highest at the center.  Write the pressure at this point. Find 

the largest radius R for fixed M such that the pressure is finite at the origin, 
( )0p < ∞ . 

 
 The pressure at the center is 
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Demanding that this be finite means that the denominator is positive, so 
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