Solution Set P

40. The Tolman-Oppenheimer-Volkoff equations, $\frac{d p}{d r}=-\frac{G\left(M(r)+4 \pi p r^{3}\right)(\rho+p)}{r(r-2 G M(r))}$, are generally hard to solve analytically, but we will do so for an idealized situation, which is called an infinitely stiff equation of state, where $\rho(r)=\left\{\begin{array}{cl}\rho_{0} & \text { if } r<R, \\ 0 & \text { if } r>R,\end{array}\right.$ and ρ_{0} is a constant. Comment: When writing equations by hand, I tend to write \boldsymbol{p} as \boldsymbol{P} so it doesn't look like ρ.
(a) Find a formula for $M(r)$, the integrated mass, for $\boldsymbol{r}<\boldsymbol{R}$. What is the total mass

$$
M=M(R) \boldsymbol{?}
$$

The equation for the mass is trivial to integrate,

$$
M(r)=4 \pi \int \rho(r) r^{2} d r=4 \pi \rho_{0} \int r^{2} d r=\frac{4}{3} \pi \rho_{0} r^{3} .
$$

The total mass, of course, is $M=\frac{4}{3} \pi \rho_{0} R^{3}$.
(b) Rearrange the TOV equation so that the left side has only functions of \boldsymbol{p} in it, and the right side has only \boldsymbol{r} in it. It will look like $f(p) d p=g(r) d r$.

We start by substituting and rearranging the equation, so we have

$$
\begin{aligned}
& \frac{d p}{d r}=-\frac{G\left(\frac{4}{3} \pi \rho_{0} r^{3}+4 \pi p r^{3}\right)\left(\rho_{0}+p\right)}{r\left(r-\frac{8}{3} \pi G \rho_{0} r^{3}\right)}, \\
& \frac{d p}{\left(p+\rho_{0}\right)\left(p+\frac{1}{3} \rho_{0}\right)}=\frac{-4 \pi G r^{3} d r}{r^{2}-\frac{8}{3} \pi G \rho_{0} r^{4}}, \\
& \frac{d p}{\left(p+\rho_{0}\right)\left(p+\frac{1}{3} \rho_{0}\right)}=\frac{-4 \pi G r d r}{1-\frac{8}{3} \pi G \rho_{0} r^{2}} .
\end{aligned}
$$

(c) Integrate equation (b) to get a relationship between p and r. Don't forget the constant of integration! The constant of integration will be chosen here or in part (d) so that the pressure at $r=R$ is zero.

As nasty as this looks, we can integrate it by hand, or we can get a little help from Maple or similar tools. I find it easiest to multiply both sides by $\frac{2}{3} \rho_{0}$, because the left side can now be cleanly separated into two terms that are easy to integrate:

$$
\begin{aligned}
& \frac{\frac{2}{3} \rho_{0} d p}{\left(p+\rho_{0}\right)\left(p+\frac{1}{3} \rho_{0}\right)}=\frac{-\frac{8}{3} \pi G \rho_{0} r d r}{1-\frac{8}{3} \pi G \rho_{0} r^{2}} \\
& \int\left(\frac{d p}{p+\frac{1}{3} \rho_{0}}-\frac{d p}{p+\rho_{0}}\right)=\frac{1}{2} \int \frac{d\left(-\frac{8}{3} \pi G \rho_{0} r^{2}\right)}{1-\frac{8}{3} \pi G \rho_{0} r^{2}} \\
& \ln \left(p+\frac{1}{3} \rho_{0}\right)-\ln \left(p+\rho_{0}\right)=\frac{1}{2} \ln \left(1-\frac{8}{3} \pi G \rho_{0} r^{2}\right)+k
\end{aligned}
$$

(d) Do some work to solve the result of eq. (c) for the pressure \boldsymbol{p} as a function of \boldsymbol{r}. The terms with \boldsymbol{G} in them can be simplified by eliminating ρ_{0} in favor of the total mass M and the total radius R.

We exponentiate both sides to yield

$$
\frac{p+\frac{1}{3} \rho_{0}}{p+\rho_{0}}=e^{k} \sqrt{1-\frac{8}{3} \pi G \rho_{0} r^{2}} .
$$

The constant k is chosen so that at $r=R$, the pressure vanishes, and the left side becomes $1 / 3$. We therefore rewrite this as

$$
\frac{p+\frac{1}{3} \rho_{0}}{p+\rho_{0}}=\frac{\sqrt{1-\frac{8}{3} \pi G \rho_{0} r^{2}}}{3 \sqrt{1-\frac{8}{3} \pi G \rho_{0} R^{2}}} .
$$

We recall that $M=\frac{4}{3} \pi R^{3}$, so this formula becomes

$$
\frac{p+\frac{1}{3} \rho_{0}}{p+\rho_{0}}=\frac{\sqrt{1-2 G M r^{2} / R^{3}}}{3 \sqrt{1-2 G M / R}}=\frac{\sqrt{R^{3}-2 G M r^{2}}}{3 R \sqrt{R-2 G M}}
$$

We now cross-multiply and solve for p :

$$
\begin{gathered}
\left(3 p+\rho_{0}\right) R \sqrt{R-2 G M}=\left(p+\rho_{0}\right) \sqrt{R^{3}-2 G M r^{2}}, \\
p\left(3 R \sqrt{R-2 G M}-\sqrt{R^{3}-2 G M r^{2}}\right)=\rho_{0}\left(\sqrt{R^{3}-2 G M r^{2}}-R \sqrt{R-2 G M}\right), \\
\frac{p}{\rho_{0}}=\frac{\sqrt{R^{3}-2 G M r^{2}}-R \sqrt{R-2 G M}}{3 R \sqrt{R-2 G M}-\sqrt{R^{3}-2 G M r^{2}}} .
\end{gathered}
$$

(e) The pressure should be highest at the center. Write the pressure at this point. Find the largest radius \boldsymbol{R} for fixed M such that the pressure is finite at the origin, $p(0)<\infty$.

The pressure at the center is

$$
\frac{p}{\rho_{0}}=\frac{R \sqrt{R}-R \sqrt{R-2 G M}}{3 R \sqrt{R-2 G M}-R \sqrt{R}}=\frac{\sqrt{R}-\sqrt{R-2 G M}}{3 \sqrt{R-2 G M}-\sqrt{R}} .
$$

Demanding that this be finite means that the denominator is positive, so

$$
\begin{gathered}
3 \sqrt{R-2 G M}-\sqrt{R}>0, \\
9(R-2 G M)>R . \\
8 R>18 G M \\
R>\frac{9}{4} G M .
\end{gathered}
$$

