Physics 780 - General Relativity

Solution Set N

34. [10] Consider a light beam approaching a black hole with mass M. The light beam is moving in the plane $\theta=\frac{1}{2} \pi$. From class notes, we have

$$
\frac{E^{2}}{J^{2}}-\frac{1}{r^{2}}+\frac{2 G M}{r^{3}}=\frac{1}{r^{4}}\left(\frac{d r}{d \phi}\right)^{2} .
$$

(a) [5] Find the radius at which the left side of this equation is extremized (minimum or maximum). Is it a minimum or maximum? A photon at this radius can circle endlessly, $(d r / d \phi=0)$ if $\boldsymbol{E} / \boldsymbol{J}$ has the right value. Will this be a stable or unstable orbit?

We simply take the derivative of the left side and set it to zero, so

$$
0=\frac{d}{d r}\left(\frac{E^{2}}{J^{2}}-\frac{1}{r^{2}}+\frac{2 G M}{r^{3}}\right)=\frac{2}{r^{3}}-\frac{6 G M}{r^{4}}=\frac{2}{r^{4}}(r-3 G M)
$$

This will occur at $R=3 G M$. By taking another derivative and evaluating it at this value, we find

$$
\left.\frac{d^{2}}{d r^{2}}\left(\frac{E^{2}}{J^{2}}-\frac{1}{r^{2}}+\frac{2 G M}{r^{3}}\right)\right|_{3 G M}=\left.\left(-\frac{6}{r^{4}}+\frac{24 G M}{r^{5}}\right)\right|_{3 G M}=-\frac{6}{81 G^{4} M^{4}}+\frac{24}{243 G^{4} M^{4}}=\frac{2}{81 G^{4} M^{4}}>0 .
$$

Because the second derivative is positive, it is a local maximum, and hence this is an unstable orbit.
(b) [5] What will be the value of E / J for this orbit? Keeping in mind that we showed in class that $J / E=b$ is the impact parameter, you should be able to find the impact parameter b_{C} which will end up converging to a circular orbit.

Since it is in a circular orbit, we have $d r / d \phi=0$. Therefore we have

$$
\begin{gathered}
0=\frac{E^{2}}{J^{2}}-\frac{1}{r^{2}}+\frac{2 G M}{r^{3}}=\frac{E^{2}}{J^{2}}-\frac{1}{(3 G M)^{2}}+\frac{2 G M}{(3 G M)^{3}}=\frac{E^{2}}{J^{2}}-\frac{1}{9 G^{2} M^{2}}+\frac{2}{27 G^{3} M^{3}}=\frac{E^{2}}{J^{2}}-\frac{1}{27 G^{2} M^{2}}, \\
\frac{E}{J}=\frac{1}{\sqrt{27} G M} .
\end{gathered}
$$

Flipping this upside down, we see that we have $b_{C}=\sqrt{27} G M$.
(c) [3] Qualitatively, what will happen to a photon that starts at a larger impact parameter, so we have $b>b_{c}$? That is to say, will there be any radius where $d r / d \phi=0$? What if $\boldsymbol{b}<\boldsymbol{b}_{\boldsymbol{C}}$?

If $b>b_{C}$, then E / J will be smaller, and it will be impossible to reach this critical radius R $=3 G M$. Hence a photon will instead stop at some minimum radius and then leave again, and it will miss the black hole. If $b<b_{c}$, then the photon will get sucked into the black hole.
(d) [2] Find the cross-section for absorption of photons by a black hole; that is, the area of incoming photons that are absorbed by the black hole.

The cross-section is just the total area of the region that absorbs photons, which is $\pi b_{C}^{2}=27 \pi G^{2} M^{2}$. The naïve cross suction would just be the area of a circle the size of the event horizon, which is $\pi R_{S}^{2}=4 \pi G^{2} M^{2}$, so the actual cross-section is 6.75 times larger than this.
35. [25] Can you make a black hole in two spatial dimensions? We will work in polar coordinates (t, r, ϕ), and assume the stress-energy tensor is zero away from the origin.
(a) [2] First, what is the flat spacetime metric in polar coordinates? If you don't know, write it in Cartesian coordinates and rewrite it using $x=r \cos \phi$ and $y=r \sin \phi$.

We have done this several times before in two dimensions, and adding the third time dimension doesn't change much, so we can show $d s^{2}=-\mathrm{d} t^{2}+\mathrm{d} r^{2}+r^{2} \mathrm{~d} \phi^{2}$.
(b) [2] Assume the black hole is rotationally invariant and time invariant, so we can choose coordinates such that ∂_{t} and ∂_{ϕ} are Killing vectors. What does this tell us about the metric components, i.e., what coordinates can they depend on?

All of the metric components will be independent of both t and ϕ, so they will depend only on r.
(c) [3] Assume the metric is invariant under reflection so that $\phi \rightarrow-\phi$. Argue that the metric now takes the form $d s^{2}=-f \mathrm{~d} t^{2}+2 j \mathrm{~d} r \mathrm{~d} t+h \mathrm{~d} r^{2}+b \mathrm{~d} \phi^{2}$.

In general, all nine components (six independent) of the metric could exist. However, terms like $k \mathrm{~d} r \mathrm{~d} \phi$ or $m \mathrm{~d} t \mathrm{~d} \phi$ would go to their negatives under the reflection symmetry proposed, and hence must vanish. These are the only terms that could remain.
(d) [4] Change time to a new coordinate $t \rightarrow t^{\prime}=t-\int(j / f) d r$. Show that this eliminates j. Once you have done so, rename any functions and variables so the metric now takes the form in part (c), but with $\boldsymbol{j}=0$.

We define t^{\prime} as indicated, and then find that $d t=d t^{\prime}+(j / f) d r$. Substituting in, the metric is now

$$
\begin{aligned}
d s^{2} & =-f\left(\mathrm{~d} t^{\prime}+(j / f) \mathrm{d} r\right)^{2}+2 j \mathrm{~d} r\left(\mathrm{~d} t^{\prime}+(j / f) \mathrm{d} r\right)+h \mathrm{~d} r^{2}+b \mathrm{~d} \phi^{2} \\
& =-f \mathrm{~d} t^{\prime 2}+\left(h+j^{2} / f\right) \mathrm{d} r^{2}+b \mathrm{~d} \phi^{2} .
\end{aligned}
$$

We define $h^{\prime}=h+j^{2} / f$, and suddenly the metric takes the same form as before, but with a couple of primes thrown in. We then rename $h^{\prime} \rightarrow h$ and $t^{\prime} \rightarrow t$, and we have it.
(e) [3] Explain why you can change variables r such that the metric is now $d s^{2}=-f \mathrm{~d} t^{2}+h \mathrm{~d} r^{2}+r^{2} \mathrm{~d} \phi^{2}$.

We simply define a new radial coordinate $r^{\prime}=\sqrt{b(r)}$, and the effect is that the $\mathrm{d} \phi^{2}$ term now will just be multiplied by $r^{\prime 2}$. This will change the functions f and h, of course, but since we don't know what they are, we just rename the new functions as f and h and rename r^{\prime} as r.
(f) [3] Find all the components of the Ricci tensor and/or Einstein tensor. I recommend you use grealc or a similar method to save your sanity.

I used grcalc and decided to focus on the Einstein tensor, since this was simplest. I found

$$
G_{t t}=\frac{f h^{\prime}}{2 h^{2}}, \quad G_{r r}=\frac{f^{\prime}}{2 f r}, \quad G_{\phi \phi}=\frac{r^{2} f^{\prime \prime}}{2 f h}-\frac{r f^{\prime 2}}{4 f^{2} h}-\frac{r^{2} f^{\prime} h^{\prime}}{4 f h^{2}} .
$$

(g) [4] Since we have no source away from the origin, $R_{\mu \nu}=G_{\mu \nu}=0$. Based on this, show that \boldsymbol{f} and \boldsymbol{h} must both be constants (I used the Einstein tensor). Argue that by rescaling your time coordinate, one of these functions can be set equal to one.

The equation $G_{t t}=0$ tells us that $h^{\prime}=0$ so that h is constant. The equation $G_{r r}=0$ tells us that $f^{\prime}=0$ so that f is constant. We can then define a new time coordinate $t^{\prime}=t \sqrt{f}$, and then rewrite the metric in terms of t^{\prime}, which makes the metric $d s^{2}=-\mathrm{d} t^{\prime 2}+h \mathrm{~d} r^{2}+r^{2} \mathrm{~d} \phi^{2}$.
(h) [4] Show that by rescaling the radial and angular coordinate $r^{\prime}=r \sqrt{h}$ and $\phi^{\prime}=\phi / \sqrt{h}$, we can make the metric look just like the one in part (a). You might think this metric is identical to empty spacetime, but it is not. Why not? Hint: what is the range of ϕ^{\prime} ?

It is obvious that $\mathrm{d} r^{\prime 2}=h \mathrm{~d} r^{2}$. We also find $r^{\prime 2} \mathrm{~d} \phi^{\prime 2}=h r^{2} \mathrm{~d} \phi^{2} / h=r^{2} \mathrm{~d} \phi^{2}$. We therefore have a metric $d s^{2}=-\mathrm{d} t^{\prime 2}+\mathrm{d} r^{\prime 2}+r^{\prime 2} \mathrm{~d} \phi^{\prime 2}$, which, other than the primes, is identical with the metric in part (a). However, even though the range of t^{\prime} and r^{\prime} are still their usual ranges of $t^{\prime} \in(-\infty, \infty)$ and $r^{\prime} \in(0, \infty)$, as usual, the range for $\phi^{\prime} \in(0,2 \pi / \sqrt{h})$. Assuming $h>1$, it is a flat universe with a wedge removed.

