Physics 780 – General Relativity Homework Set K

27. In problems 20 and 25, you had to work out a rather specific metric, but where did this metric come from? Our goal is to find the most general 3D spatial metric that is spherically symmetric; that is, one can choose two of the coordinates θ and ϕ such that the three vectors

 $L_{x} = -\sin\phi\partial_{\theta} - \cot\theta\cos\phi\partial_{\phi}, \quad L_{y} = \cos\phi\partial_{\theta} - \cot\theta\sin\phi\partial_{\phi}, \quad L_{z} = \partial_{\phi},$

are all Killing vectors, which satisfy Killing's equation

$$K^{\alpha}\partial_{\alpha}g_{\mu\nu} + g_{\mu\alpha}\partial_{\nu}K^{\alpha} + g_{\nu\alpha}\partial_{\mu}K^{\alpha} = 0.$$

We will in fact only use L_z and L_x , and will call our remaining coordinate r.

(a) Using the fact that L_z is a Killing vector, argue that all our metric components are not functions of ϕ , so $g_{\mu\nu} = g_{\mu\nu}(r, \theta)$.

If you write out Killing's equation for the K_z , it turns into $\partial_{\phi}g_{\mu\nu} = 0$, so $g_{\mu\nu} = g_{\mu\nu}(r,\theta)$.

(b) Apply Killing's equation for $\mu = v = r$, and show that in fact g_{rr} isn't a function of θ .

The vector L_x has no *r* dependence, so the derivative terms acting on L_x will vanish. Keeping in mind that $\partial_{\phi}g_{\mu\nu} = 0$, we see that $L_x^{\alpha}\partial_{\alpha}g_{\mu\nu} = -\sin\phi\partial_{\theta}g_{\mu\nu}$ in general. Setting $\mu = v = r$, Klling's equation is now $-\sin\phi\partial_{\theta}g_{rr} = 0$, so g_{rr} isn't a function of θ , $g_{rr} = g_{rr}(r)$.

(c) Apply Killing's equation for $\mu = r, \nu = \theta$, and evaluate it at $\phi = 0$ to show that $g_{r\phi} = 0$.

We write out the equation as

$$0 = -\sin\phi\partial_{\theta}g_{r\theta} + g_{r\alpha}\partial_{\theta}L_{x}^{\alpha} + g_{\theta\alpha}\partial_{r}L_{x}^{\alpha} = -\sin\phi\partial_{\theta}g_{r\theta} - g_{r\phi}\partial_{\theta}\left(\cos\phi\cot\theta\right)$$
$$= -\sin\phi\partial_{\theta}g_{r\theta} + g_{r\phi}\cos\phi\csc^{2}\theta.$$

Evaluating at $\phi = 0$, we have $g_{r\phi} \csc^2 \theta = 0$, so $g_{r\phi} = 0$.

(d) Apply Killing's equation for $\mu = r, \nu = \phi$ to show that $g_{r\theta} = 0$.

We do similar work to show

$$0 = -\sin\phi\partial_{\theta}g_{r\phi} + g_{r\alpha}\partial_{\phi}L_{x}^{\alpha} + g_{\phi\alpha}\partial_{r}L_{x}^{\alpha} = 0 + g_{r\theta}\partial_{\phi}\left(-\sin\phi\right) = g_{r\theta}\cos\phi.$$

We see that $g_{r\theta} = 0$.

(e) Write Killing's equation for $\mu = \nu = \theta$, and by evaluating it at $\phi = 0$ and $\phi = \frac{1}{2}\pi$, show that $g_{\theta\phi} = 0$ and $g_{\theta\theta}$ is not a function of θ .

We have

 $0 = \cos\phi\partial_{\theta}g_{\theta\theta} + 2g_{\theta\alpha}\partial_{\theta}L_{y}^{\alpha} = -\sin\phi\partial_{\theta}g_{\theta\theta} - 2g_{\theta\phi}\partial_{\theta}\left(\cos\phi\cot\theta\right) = -\sin\phi\partial_{\theta}g_{\theta\theta} + 2g_{\theta\phi}\cos\phi\csc^{2}\theta.$ Setting $\phi = 0$, we have $2g_{\theta\phi}\csc^{2}\theta = 0$, or $g_{\theta\phi} = 0$. Setting $\phi = \frac{1}{2}\pi$, we have $\partial_{\theta}g_{\theta\theta} = 0$.

(f) Apply Killing's equation for $\mu = \theta$, $\nu = \phi$ to show that $g_{\phi\phi} = \sin^2 \theta g_{\theta\theta}$.

Here we have

$$0 = \cos \phi \partial_{\theta} g_{\theta\phi} + g_{\theta\alpha} \partial_{\phi} L_{y}^{\alpha} + g_{\phi\alpha} \partial_{\theta} L_{y}^{\alpha} = g_{\theta\theta} \partial_{\phi} (\cos \phi) + g_{\phi\phi} \partial_{\theta} (-\sin \phi \cot \theta)$$
$$= -g_{\theta\theta} \sin \phi + g_{\phi\phi} \sin \phi \csc^{2} \theta,$$
$$g_{\phi\phi} = g_{\theta\theta} \sin^{2} \theta.$$

(g) At this point, the metric must take the form $ds^2 = a(r)dr^2 + b(r)(d\theta^2 + \sin^2\theta d\phi^2)$. Change variables $r \to r'$, where $r' = \sqrt{b(r)}$. What is the form of the metric now? If you need it, just let b^{-1} be the inverse function of b.

Of course, when you do this, the b(r) term becomes just r'^2 . Solving the equation for r, we have $r = b^{-1}(r'^2)$. We then have

$$dr = db^{-1}(r'^{2}) = \frac{d}{dr'}b^{-1}(r'^{2})dr' = 2r'b^{-1'}(r'^{2})dr'.$$

Substituting this into the given metric, we would have

$$ds^{2} = 4r'^{2}a(b^{-1}(r'^{2}))(b^{-1'}(r'^{2}))^{2} dr'^{2} + r'^{2}(d\theta^{2} + \sin^{2}\theta d\phi^{2}).$$

Since we have no idea what the functions *a* or *b* are, we can just call the horrendous first term h(r'), and then we can rename $r' \rightarrow r$ to rewrite this in the standard form

$$ds^{2} = h(r)dr^{2} + r^{2}(d\theta^{2} + \sin^{2}\theta d\phi^{2}).$$