Physics 780 - General Relativity

Homework Set K

27. In problems 20 and 25 , you had to work out a rather specific metric, but where did this metric come from? Our goal is to find the most general 3D spatial metric that is spherically symmetric; that is, one can choose two of the coordinates θ and ϕ such that the three vectors

$$
L_{x}=-\sin \phi \partial_{\theta}-\cot \theta \cos \phi \partial_{\phi}, \quad L_{y}=\cos \phi \partial_{\theta}-\cot \theta \sin \phi \partial_{\phi}, \quad L_{z}=\partial_{\phi},
$$

are all Killing vectors, which satisfy Killing's equation

$$
K^{\alpha} \partial_{\alpha} g_{\mu \nu}+g_{\mu \alpha} \partial_{\nu} K^{\alpha}+g_{\nu \alpha} \partial_{\mu} K^{\alpha}=0 .
$$

We will in fact only use L_{z} and L_{x}, and will call our remaining coordinate r.
(a) Using the fact that L_{z} is a Killing vector, argue that all our metric components are not functions of ϕ, so $g_{\mu \nu}=g_{\mu \nu}(r, \theta)$.

If you write out Killing's equation for the K_{z}, it turns into $\partial_{\phi} g_{\mu \nu}=0$, so $g_{\mu \nu}=g_{\mu \nu}(r, \theta)$.
(b) Apply Killing's equation for $\mu=v=r$, and show that in fact $g_{r r}$ isn't a function of θ.

The vector L_{x} has no r dependance, so the derivative terms acting on L_{x} will vanish. Keeping in mind that $\partial_{\phi} g_{\mu \nu}=0$, we see that $L_{x}^{\alpha} \partial_{\alpha} g_{\mu \nu}=-\sin \phi \partial_{\theta} g_{\mu \nu}$ in general. Setting $\mu=v=r$, Klling's equation is now $-\sin \phi \partial_{\theta} g_{r r}=0$, so $g_{r r}$ isn't a function of $\theta, g_{r r}=g_{r r}(r)$.
(c) Apply Killing's equation for $\mu=r, v=\theta$, and evaluate it at $\phi=0$ to show that $g_{r \phi}=0$.

We write out the equation as

$$
\begin{aligned}
0 & =-\sin \phi \partial_{\theta} g_{r \theta}+g_{r \alpha} \partial_{\theta} L_{x}^{\alpha}+g_{\theta \alpha} \partial_{r} L_{x}^{\alpha}=-\sin \phi \partial_{\theta} g_{r \theta}-g_{r \phi} \partial_{\theta}(\cos \phi \cot \theta) \\
& =-\sin \phi \partial_{\theta} g_{r \theta}+g_{r \phi} \cos \phi \csc ^{2} \theta .
\end{aligned}
$$

Evaluating at $\phi=0$, we have $g_{r \phi} \csc ^{2} \theta=0$, so $g_{r \phi}=0$.
(d) Apply Killing's equation for $\mu=r, v=\phi$ to show that $g_{r \theta}=0$.

We do similar work to show

$$
0=-\sin \phi \partial_{\theta} g_{r \phi}+g_{r \alpha} \partial_{\phi} L_{x}^{\alpha}+g_{\phi \alpha} \partial_{r} L_{x}^{\alpha}=0+g_{r \theta} \partial_{\phi}(-\sin \phi)=g_{r \theta} \cos \phi .
$$

We see that $g_{r \theta}=0$.
(e) Write Killing's equation for $\mu=\nu=\theta$, and by evaluating it at $\phi=0$ and $\phi=\frac{1}{2} \pi$, show that $g_{\theta \phi}=0$ and $g_{\theta \theta}$ is not a function of θ.

We have

$$
0=\cos \phi \partial_{\theta} g_{\theta \theta}+2 g_{\theta \alpha} \partial_{\theta} L_{y}^{\alpha}=-\sin \phi \partial_{\theta} g_{\theta \theta}-2 g_{\theta \phi} \partial_{\theta}(\cos \phi \cot \theta)=-\sin \phi \partial_{\theta} g_{\theta \theta}+2 g_{\theta \phi} \cos \phi \csc ^{2} \theta
$$

Setting $\phi=0$, we have $2 g_{\theta \phi} \csc ^{2} \theta=0$, or $g_{\theta \phi}=0$. Setting $\phi=\frac{1}{2} \pi$, we have $\partial_{\theta} g_{\theta \theta}=0$.
(f) Apply Killing's equation for $\mu=\theta, v=\phi$ to show that $g_{\phi \phi}=\sin ^{2} \theta g_{\theta \theta}$.

Here we have

$$
\begin{aligned}
0 & =\cos \phi \partial_{\theta} g_{\theta \phi}+g_{\theta \alpha} \partial_{\phi} L_{y}^{\alpha}+g_{\phi \alpha} \partial_{\theta} L_{y}^{\alpha}=g_{\theta \theta} \partial_{\phi}(\cos \phi)+g_{\phi \phi} \partial_{\theta}(-\sin \phi \cot \theta) \\
& =-g_{\theta \theta} \sin \phi+g_{\phi \phi} \sin \phi \csc ^{2} \theta, \\
g_{\phi \phi} & =g_{\theta \theta} \sin ^{2} \theta .
\end{aligned}
$$

(g) At this point, the metric must take the form $d s^{2}=a(r) \mathrm{d} r^{2}+b(r)\left(\mathrm{d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \phi^{2}\right)$.

Change variables $r \rightarrow r^{\prime}$, where $r^{\prime}=\sqrt{b(r)}$. What is the form of the metric now? If you need it, just let b^{-1} be the inverse function of \boldsymbol{b}.

Of course, when you do this, the $b(r)$ term becomes just $r^{\prime 2}$. Solving the equation for r, we have $r=b^{-1}\left(r^{\prime 2}\right)$. We then have

$$
\mathrm{d} r=\mathrm{d} b^{-1}\left(r^{\prime 2}\right)=\frac{d}{d r^{\prime}} b^{-1}\left(r^{\prime 2}\right) \mathrm{d} r^{\prime}=2 r^{\prime} b^{-1 \prime}\left(r^{\prime 2}\right) \mathrm{d} r^{\prime}
$$

Substituting this into the given metric, we would have

$$
d s^{2}=4 r^{\prime 2} a\left(b^{-1}\left(r^{\prime 2}\right)\right)\left(b^{-1^{\prime}}\left(r^{\prime 2}\right)\right)^{2} \mathrm{~d} r^{\prime 2}+r^{\prime 2}\left(\mathrm{~d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \phi^{2}\right)
$$

Since we have no idea what the functions a or b are, we can just call the horrendous first term $h\left(r^{\prime}\right)$, and then we can rename $r^{\prime} \rightarrow r$ to rewrite this in the standard form

$$
d s^{2}=h(r) \mathrm{d} r^{2}+r^{2}\left(\mathrm{~d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \phi^{2}\right) .
$$

