Physics 780 - General Relativity

Solution Set J

25. In homework set H, problem 20, you had to work out all the components if $\Gamma_{\alpha \beta}^{\nu}$ for the metric $d s^{2}=h(r) \mathrm{d} r^{2}+r^{2} \mathrm{~d} \theta^{2}+r^{2} \sin ^{2} \theta \mathrm{~d} \phi^{2}$.
(a) Use these to get all non-zero components of the Riemann tensor of the form $R^{\mu}{ }_{v \mu v}$ (no sums). There should be six in total. As a check, note that they must all vanish if $h(r)=1$.

The indices μ and ν take on three values each, so you might think that there would be nine possible components of this form. However, the anti-symmetry of the last two indices guarantees that it will automatically vanish if $\mu=v$. We now just start working out the six remaining cases, using the formula $R_{\beta \mu \nu}^{\alpha}=\partial_{\mu} \Gamma_{\nu \beta}^{\alpha}-\partial_{\nu} \Gamma_{\mu \beta}^{\alpha}+\Gamma_{\mu \lambda}^{\alpha} \Gamma_{\nu \beta}^{\lambda}-\Gamma_{\nu \lambda}^{\alpha} \Gamma_{\mu \beta}^{\lambda}$.

$$
\begin{aligned}
R_{\theta r \theta}^{r} & =\partial_{r} \Gamma_{\theta \theta}^{r}-\partial_{\theta} \Gamma_{r \theta}^{r}+\Gamma_{r \alpha}^{r} \Gamma_{\theta \theta}^{\alpha}-\Gamma_{\theta \alpha}^{r} \Gamma_{r \theta}^{\alpha}=-\partial_{r}\left(\frac{r}{h}\right)-\frac{h^{\prime}}{2 h}\left(\frac{r}{h}\right)+\left(\frac{r}{h}\right) \frac{1}{r}=\frac{h^{\prime} r}{h^{2}}-\frac{1}{h}-\frac{h^{\prime} r}{2 h^{2}}+\frac{1}{h}=\frac{h^{\prime} r}{2 h^{2}}, \\
R_{\phi r \phi}^{r} & =\partial_{r} \Gamma_{\phi \phi}^{r}-\partial_{\phi} \Gamma_{r \phi}^{r}+\Gamma_{r \alpha}^{r} \Gamma_{\phi \phi}^{\alpha}-\Gamma_{\phi \alpha}^{r} \Gamma_{r \phi}^{\alpha}=-\partial_{r}\left(\frac{r \sin ^{2} \theta}{h}\right)-\frac{h^{\prime}}{2 h}\left(\frac{r \sin ^{2} \theta}{h}\right)+\left(\frac{r \sin ^{2} \theta}{h}\right) \frac{1}{r} \\
& =\frac{h^{\prime} r \sin ^{2} \theta}{h^{2}}-\frac{\sin ^{2} \theta}{h}-\frac{h^{\prime} r \sin ^{2} \theta}{2 h^{2}}+\frac{\sin ^{2} \theta}{h}=\frac{h^{\prime} r \sin ^{2} \theta}{2 h^{2}}, \\
R_{r \theta r}^{\theta} & =\partial_{\theta} \Gamma_{r r}^{\theta}-\partial_{r} \Gamma_{\theta r}^{\theta}+\Gamma_{\theta \alpha}^{\theta} \Gamma_{r r}^{\alpha}-\Gamma_{r \alpha}^{\theta} \Gamma_{\theta r}^{\alpha}=-\partial_{r}\left(\frac{1}{r}\right)+\frac{1}{r} \frac{h^{\prime}}{2 h}-\frac{1}{r} \cdot \frac{1}{r}=\frac{h^{\prime}}{2 r h}, \\
R_{r \phi r}^{\phi} & =\partial_{\phi} \Gamma_{r r}^{\phi}-\partial_{r} \Gamma_{\phi r}^{\phi}+\Gamma_{\phi \alpha}^{\phi} \Gamma_{r r}^{\alpha}-\Gamma_{r \alpha}^{\phi} \Gamma_{\phi r}^{\alpha}=-\partial_{r}\left(\frac{1}{r}\right)+\frac{1}{r} \frac{h^{\prime}}{2 h}-\frac{1}{r} \cdot \frac{1}{r}=\frac{h^{\prime}}{2 r h}, \\
R_{\phi \theta \phi}^{\theta} & =\partial_{\theta} \Gamma_{\phi \phi}^{\theta}-\partial_{\phi} \Gamma_{\phi \theta}^{\theta}+\Gamma_{\theta \alpha}^{\theta} \Gamma_{\phi \phi}^{\alpha}-\Gamma_{\phi \alpha}^{\theta} \Gamma_{\theta \phi}^{\alpha}=-\partial_{\theta}(\sin \theta \cos \theta)-\frac{1}{r}\left(\frac{r \sin ^{2} \theta}{h}\right)+\sin \theta \cos \theta \cot \theta \\
& =-\cos ^{2} \theta+\sin ^{2} \theta-\frac{\sin ^{2} \theta}{h}+\cos ^{2} \theta=\sin ^{2} \theta\left(1-\frac{1}{h}\right), \\
R_{\theta \phi \theta}^{\phi} & =\partial_{\phi} \Gamma_{\theta \theta}^{\phi}-\partial_{\theta} \Gamma_{\theta \phi}^{\phi}+\Gamma_{\phi \alpha}^{\phi} \Gamma_{\theta \theta}^{\alpha}-\Gamma_{\theta \alpha}^{\phi} \Gamma_{\phi \theta}^{\alpha}=-\partial_{\theta} \cot \theta-\frac{1}{r}\left(\frac{r}{h}\right)-\cot ^{2} \theta=\csc ^{2} \theta-\frac{1}{h}-\cot ^{2} \theta=1-\frac{1}{h} .
\end{aligned}
$$

(b) Find the diagonal components of the Ricci tensor, $R_{\mu \nu}=R^{\alpha}{ }_{\mu \alpha \nu}$, for the three components $R_{r r}, R_{\theta \theta}$, and $R_{\phi \phi}$. If you have made no mistakes so far, you should find $R_{\phi \phi}=\sin ^{2} \theta R_{\theta \theta}$.

This works out pretty easily, as we just have two terms to add in each case

$$
\begin{aligned}
& R_{r r}=R_{r \alpha r}^{\alpha}=R_{r r r}^{r}+R_{r \theta r}^{\theta}+R_{r \phi r}^{\phi}=\frac{h^{\prime}}{2 r h}+\frac{h^{\prime}}{2 r h}=\frac{h^{\prime}}{r h}, \\
& R_{\theta \theta}=R_{\theta \alpha \theta}^{\alpha}=R_{\theta r \theta}^{r}+R_{\theta \theta \theta}^{\theta}+R_{\theta \phi \theta}^{\phi}=\frac{h^{\prime} r}{2 h^{2}}+1-\frac{1}{h}, \\
& R_{\phi \phi}=R_{\phi \alpha \phi}^{\alpha}=R_{\phi r \theta}^{r}+R_{\phi \theta \phi}^{\theta}+R_{\phi \phi \phi}^{\phi}=\frac{h^{\prime} r \sin ^{2} \theta}{2 h^{2}}+\left(1-\frac{1}{h}\right) \sin ^{2} \theta .
\end{aligned}
$$

Obviously, $R_{\phi \phi}=\sin ^{2} \theta R_{\theta \theta}$.
(c) Find the Ricci scalar and show that it equals $R=\frac{2 h^{\prime}}{r h^{2}}+\frac{2}{r^{2}}-\frac{2}{r^{2} h}$.

We have

$$
\begin{aligned}
R & =g^{\mu \nu} R_{\mu \nu}=g^{r r} R_{r r}+g^{\theta \theta} R_{\theta \theta}+g^{\phi \phi} R_{\phi \phi}=\frac{1}{h} \frac{h^{\prime}}{r h}+\frac{1}{r^{2}}\left(\frac{h^{\prime} r}{2 h^{2}}+1-\frac{1}{h}\right)+\frac{1}{r^{2} \sin ^{2} \theta}\left(\frac{h^{\prime} r}{2 h^{2}}+1-\frac{1}{h}\right) \sin ^{2} \theta \\
& =\frac{h^{\prime}}{r h^{2}}+\frac{h^{\prime}}{h^{2} r}+\frac{2}{r^{2}}-\frac{2}{r^{2} h}=\frac{2 h^{\prime}}{h^{2} r}+\frac{2}{r^{2}}-\frac{2}{r^{2} h} .
\end{aligned}
$$

26. Assume that the metric found in question 24 is homogenous, and in particular, the Ricci scalar is a constant given by $6 C$, so $R=6 C$.
(a) Find a simple formula for the combination $\frac{1}{r^{2}} \frac{d}{d r}\left(\frac{r}{h}\right)$.

First, setting $R=6 C$, we have $\frac{h^{\prime}}{h^{2} r}+\frac{1}{r^{2}}-\frac{1}{r^{2} h}=3 C$. Expanding the combination, we have

$$
\frac{1}{r^{2}} \frac{d}{d r}\left(\frac{r}{h}\right)=\frac{1}{r^{2}}\left(\frac{1}{h}-\frac{r h^{\prime}}{h^{2}}\right)=\frac{1}{r^{2} h}-\frac{h^{\prime}}{r h^{2}}=\frac{1}{r^{2}}-3 C .
$$

(b) Multiply this equation by r^{2} and integrate it. The constant of integration can be found if we insist that $\boldsymbol{h}(r)$ does not vanish at the origin. Solve the equation for h.

Multiplying by r^{2} and integrating, we have

$$
\frac{d}{d r}\left(\frac{r}{h}\right)=1-3 C r^{2}, \quad \text { so } \quad \frac{r}{h}=\int\left(1-3 C r^{2}\right) d r=r-C r^{3}+k
$$

Assuming h is non-zero at the origin, the left side vanishes, and the right side vanishes only if $k=$ 0 , so we pick $k=0$, then solve for h :

$$
h=\frac{r}{r-C r^{3}}=\frac{1}{1-C r^{2}} .
$$

