Physics 780 — General Relativity
Solution Set J

25. In homework set H, problem 20, you had to work out all the components if I",; for the
metric ds’ = h(r)dr’ +r’d6” +r’sin’ 6dg” .
(a) Use these to get all non-zero components of the Riemann tensor of the form
R (no sums). There should be six in total. As a check, note that they must all
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vanish if 7(r)=1.

The indices 1 and v take on three values each, so you might think that there would be
nine possible components of this form. However, the anti-symmetry of the last two indices
guarantees that it will automatically vanish if x=v. We now just start working out the six
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(b) Find the diagonal components of the Ricci tensor, R, =R“ , for the three

components R
R

Ry, and R,,. If you have made no mistakes so far, you should find

rr 9

—qin?
4 = SIN"OR,, .

This works out pretty easily, as we just have two terms to add in each case
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(¢) Find the Ricci scalar and show that it equals R = e +— T
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26. Assume that the metric found in question 24 is homogenous, and in particular, the Ricci
scalar is a constant given by 6C, so R=6C.

(a) Find a simple formula for the combination %i(ﬁ .
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First, setting R = 6C, we have hT+—2 —y =3C . Expanding the combination, we
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(b) Multiply this equation by r? and integrate it. The constant of integration can be
found if we insist that /(r) does not vanish at the origin. Solve the equation for A.

Multiplying by 7 and integrating, we have
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Assuming / is non-zero at the origin, the left side vanishes, and the right side vanishes only if k£ =
0, so we pick k£ = 0, then solve for 4:




