Physics 780 – General Relativity Solution Set H

- 19. In homework E problem 12 we had flat 2D space ds² = dx² + dy², and then switched to polar coordinates ds² = dρ² + ρ²dφ². We considered a vector V^μ = (V^x, V^y) = (A,0), and a 1-form V_μ = (V_x, V_y) = (A,0), where A is a constant. The Christoffel symbols in polar coordinates are Γ^φ_{ρφ} = Γ^φ_{φρ} = ρ⁻¹, Γ^ρ_{φφ} = -ρ, all others vanish.
 - (a) Convince yourself that in the original Cartesian coordinates, all the Christoffel symbols vanish and $\nabla_{\alpha}V^{\mu} = 0$ and $\nabla_{\alpha}V_{\mu} = 0$. This is trivial.

In Cartesian coordinates, the metric has vanishing derivatives, so $\Gamma^{\alpha}_{\mu\nu} = 0$. Therefore $\nabla_{\alpha}V^{\mu} = \partial_{\alpha}V^{\mu} = 0$ and $\nabla_{\alpha}V_{\mu} = \partial_{\alpha}V_{\mu} = 0$.

(b) Show explicitly that in polar coordinates $\nabla_{\alpha}V^{\mu} = 0$ (this is four equations).

The vector and covector appear in the solutions to problem 12. We simply calculate all four components using $\nabla_{\alpha}V^{\mu} = \partial_{\alpha}V^{\mu} + \Gamma^{\mu}_{\alpha\beta}V^{\beta}$:

$$\begin{aligned} \nabla_{\rho}V^{\rho} &= \partial_{\rho}V^{\rho} + 0 = \partial_{\rho}\left(A\cos\phi\right) = 0, \\ \nabla_{\rho}V^{\phi} &= \partial_{\rho}V^{\phi} + \Gamma^{\phi}_{\rho\phi}V^{\phi} = \partial_{\rho}\left(-\frac{A\sin\phi}{\rho}\right) + \frac{1}{\rho}\left(-\frac{A\sin\phi}{\rho}\right) = \frac{A\sin\phi}{\rho^{2}} - \frac{A\sin\phi}{\rho^{2}} = 0, \\ \nabla_{\phi}V^{\rho} &= \partial_{\phi}V^{\rho} + \Gamma^{\rho}_{\phi\phi}V^{\phi} = \partial_{\phi}\left(A\cos\phi\right) - \rho\left(-\frac{A\sin\phi}{\rho}\right) = -A\sin\phi + A\sin\phi = 0, \\ \nabla_{\phi}V^{\phi} &= \partial_{\phi}V^{\phi} + \Gamma^{\phi}_{\phi\rho}V^{\rho} = \partial_{\phi}\left(-\frac{A\sin\phi}{\rho}\right) + \frac{1}{\rho}A\cos\phi = -\frac{A\cos\phi}{\rho} + \frac{A\cos\phi}{\rho} = 0. \end{aligned}$$

(c) Show explicitly that in polar coordinates $\nabla_{\alpha}V_{\mu} = 0$ (this is four equations).

We simply use the formula $\nabla_{\alpha}V_{\mu} = \partial_{\alpha}V_{\mu} - \Gamma^{\mu}_{\alpha\beta}V_{\mu}$ to show

$$\begin{aligned} \nabla_{\rho}V_{\rho} &= \partial_{\rho}V_{\rho} - 0 = \partial_{\rho}\left(A\cos\phi\right) = 0, \\ \nabla_{\rho}V_{\phi} &= \partial_{\rho}V_{\phi} - \Gamma^{\phi}_{\rho\phi}V_{\phi} = \partial_{\rho}\left(-A\rho\sin\phi\right) - \frac{1}{\rho}\left(-A\rho\sin\phi\right) = -A\sin\phi + A\sin\phi = 0, \\ \nabla_{\phi}V_{\rho} &= \partial_{\phi}V_{\rho} - \Gamma^{\phi}_{\phi\rho}V_{\phi} = \partial_{\phi}\left(A\cos\phi\right) - \frac{1}{\rho}\left(-A\rho\sin\phi\right) = -A\sin\phi + A\sin\phi = 0, \\ \nabla_{\phi}V_{\phi} &= \partial_{\phi}V_{\phi} - \Gamma^{\phi}_{\phi\phi}V^{\rho} = \partial_{\phi}\left(-A\rho\sin\phi\right) + \rho\left(A\cos\phi\right) = -A\rho\cos\phi + A\rho\cos\phi = 0. \end{aligned}$$

That was boring, but it came out to zero as expected.

20. [15] Consider a generic 3D spherically symmetric metric, which can be written in the form

$$ds^{2} = h(r) dr^{2} + r^{2} d\theta^{2} + r^{2} \sin^{2} \theta d\phi^{2},$$

where h(r) is an unspecified function of r. It is common to abbreviate h(r) as h and its derivative as h'. Our goal is to find all the non-zero components of the Christoffel symbol.

(a) [2] Write the metric and its inverse as a matrix (this is easy).

The metric and inverse metric are

$$g_{\mu\nu} = \operatorname{diag}(h, r^2, r^2 \sin^2 \theta)$$
 and $g^{\mu\nu} = \operatorname{diag}\left(\frac{1}{h}, \frac{1}{r^2}, \frac{1}{r^2 \sin^2 \theta}\right)$.

(b) [3] Argue that if $\Gamma^{\nu}_{\alpha\beta} \neq 0$ then an even number of indices must be ϕ .

The connection is given by $\Gamma_{\alpha\beta}^{\nu} = \frac{1}{2} g^{\nu\mu} \left(\partial_{\alpha} g_{\beta\mu} + \partial_{\beta} g_{\alpha\mu} - \partial_{\mu} g_{\alpha\beta} \right)$. Noting that the metric and its inverse are invertible, all indices must occur in pairs, *except* for the derivative index. But nothing in the metric depends on ϕ , so any term with ∂_{ϕ} will automatically vanish. Hence ϕ is only on the metric factors, which come in pairs, so $\Gamma_{\alpha\beta}^{\nu}$ will have an even number (0 or 2) ϕ 's.

(c) [3] Argue that if $\Gamma^{\nu}_{\alpha\beta} \neq 0$ then an even number of indices must be θ or there must be at least one index that is ϕ .

The argument is almost identical, except that one component, $g_{\phi\phi}$ does depend on θ . Hence the only way to have an odd number of θ 's, it must also have at least one ϕ . Combining this with part (b), the conclusion is that the only connections with an odd number of θ 's will have two ϕ 's and one θ .

(d) [7] Calculate all non-vanishing components of $\Gamma^{\nu}_{\alpha\beta}$. There should be ten of them.

We simply start work on all the remaining possibilities, saving some time by using the symmetry of the lower two indices.

$$\begin{split} \Gamma_{rr}^{r} &= \frac{1}{2} g^{rr} \left(\partial_{r} g_{rr} + \partial_{r} g_{rr} - \partial_{r} g_{rr} \right) = \frac{h'}{2h}, \\ \Gamma_{\theta r}^{\theta} &= \Gamma_{r\theta}^{\theta} = \frac{1}{2} g^{\theta \theta} \left(\partial_{r} g_{\theta \theta} \right) = \frac{1}{2r^{2}} \partial_{r} \left(r^{2} \right) = \frac{1}{r}, \\ \Gamma_{\phi r}^{\phi} &= \Gamma_{r\phi}^{\phi} = \frac{1}{2} g^{\phi \phi} \left(\partial_{r} g_{\phi \phi} \right) = \frac{1}{2r^{2}} \sin^{2} \theta} \partial_{r} \left(r^{2} \sin^{2} \theta \right) = \frac{1}{r}, \end{split}$$

$$\Gamma_{\theta\theta}^{r} = \frac{1}{2} g^{rr} \left(-\partial_{r} g_{\theta\theta} \right) = -\frac{1}{2h} \partial_{r} \left(r^{2} \right) = -\frac{r}{h},$$

$$\Gamma_{\phi\phi}^{r} = \frac{1}{2} g^{rr} \left(-\partial_{r} g_{\phi\phi} \right) = -\frac{1}{2h} \partial_{r} \left(r^{2} \sin^{2} \theta \right) = -\frac{r \sin^{2} \theta}{h},$$

$$\Gamma_{\theta\phi}^{\phi} = \Gamma_{\phi\theta}^{\phi} = \frac{1}{2} g^{\phi\phi} \left(\partial_{\theta} g_{\phi\phi} \right) = \frac{1}{2r^{2} \sin^{2} \theta} \partial_{\theta} \left(r^{2} \sin^{2} \theta \right) = \cot \theta,$$

$$\Gamma_{\phi\phi}^{\theta} = \frac{1}{2} g^{\theta\theta} \left(-\partial_{\theta} g_{\phi\phi} \right) = -\frac{1}{2r^{2}} \partial_{\theta} \left(r^{2} \sin^{2} \theta \right) = -\sin \theta \cos \theta.$$

Since we found ten, this is probably correct. To summarize, the results are

$$\Gamma_{rr}^{r} = \frac{h'}{2h}, \quad \Gamma_{\theta r}^{\theta} = \Gamma_{r\theta}^{\theta} = \Gamma_{\phi r}^{\phi} = \Gamma_{r\phi}^{\phi} = \frac{1}{r}, \quad \Gamma_{\theta \theta}^{r} = -\frac{r}{h}, \quad \Gamma_{\phi \phi}^{r} = -\frac{r \sin^{2} \theta}{h},$$
$$\Gamma_{\theta \phi}^{\phi} = \Gamma_{\phi \theta}^{\phi} = \cot \theta, \quad \Gamma_{\phi \phi}^{\theta} = -\sin \theta \cos \theta.$$