Solution Set G

17. Consider the flat FLRW metric, $d s^{2}=-\mathrm{d} t^{2}+a^{2}(t)\left(\mathrm{d} x^{2}+\mathrm{d} y^{2}+\mathrm{d} z^{2}\right)$.
(a) Consider first the case of a radiation-dominated universe, $a(t)=\sqrt{t}$, with a big bang singularity at $\boldsymbol{t}=\mathbf{0}$. In time \boldsymbol{t}, how far can a light beam travel, starting at the origin? Give your answer in the form $s=k t$, where \boldsymbol{k} is a simple constant.

Light beams travel at $d \tau^{2}=-d s^{2}=0$, so if it moves in the x-direction, this implies $d x / d t=1 / a$. Integrating, we have

$$
x=\int \frac{d t}{a(t)}=\int \frac{d t}{\sqrt{t}}=2 \sqrt{t}
$$

The physical distance is $s=\int a d x=a x=2 \sqrt{t} \sqrt{t}=2 t$.
(b) Now consider an exponentially expanding universe, with $a(t)=e^{H t}$, with \boldsymbol{H} a constant. In this case, nothing special happens at $t=0$, so let's define $t=0$ as now. Imagine a light beam starting at us at $x=0$ and traveling in the x-direction. Find $x(t)$, and show that there is a limiting value x_{∞} that cannot be reached by the light beam, even as $t \rightarrow \infty$.

We simply do the same integral again, but with the new function, which yields

$$
x=\int \frac{d t}{a(t)}=\int e^{-H t} d t=H^{-1}\left(1-e^{-H t}\right),
$$

where the constant of integration was chosen to assure that $x(t=0)=0$. This has a limiting value of $x=H^{-1}$. Note that since $a(0)=1$, this is the physical distance now to the object. In summary, anything that is at a distance of $x=H^{-1}$ can never be affected by us, and similarly, something at this location now can never affect us.
18. In this problem we will find the 2 D "volume" of two similar metrics. Note that the answer is not guaranteed to be finite.
(a) First consider the metric $d s^{2}=\frac{\mathrm{d} x^{2}+\mathrm{d} y^{2}}{\left(1+x^{2}+y^{2}\right)^{2}}$, where \boldsymbol{x} and \boldsymbol{y} are unrestricted real numbers. As a first step, rewrite this metric in polar coordinates, $(x, y)=(\rho \cos \phi, \rho \sin \phi)$. What is the appropriate range of ρ and ϕ ?

We first note that

$$
\begin{aligned}
\mathrm{d} x^{2}+\mathrm{d} y^{2} & =(\mathrm{d}(\rho \cos \phi))^{2}+(\mathrm{d}(\rho \sin \phi))^{2} \\
& =(\cos \phi \mathrm{d} \rho-\rho \sin \phi \mathrm{d} \phi)^{2}+(\sin \phi \mathrm{d} \rho+\rho \cos \phi \mathrm{d} \phi)^{2} \\
& =\left(\cos ^{2} \phi+\sin ^{2} \phi\right) \mathrm{d} \rho^{2}+\left(\rho^{2} \sin ^{2} \phi+\rho^{2} \cos ^{2} \phi\right) \mathrm{d} \phi^{2}+2 \rho \sin \phi \cos \phi(1-1) \mathrm{d} \rho \mathrm{~d} \phi \\
& =\mathrm{d} \rho^{2}+\rho^{2} \mathrm{~d} \phi^{2}
\end{aligned}
$$

Substituting this into the metric, we have

$$
d s^{2}=\frac{\mathrm{d} \rho^{2}+\rho^{2} \mathrm{~d} \phi^{2}}{\left(1+\rho^{2}\right)^{2}}
$$

It is clear that the range for ρ is $(0, \infty)$, and to get in all directions, the range for ϕ is $(0,2 \pi)$.

(b) Calculate the volume of the metric described in part (a).

We first find the determinant of the metric and take the square root. The determinant is

$$
\begin{aligned}
& g=g_{\rho \rho} g_{\phi \phi}=\frac{1}{\left(1+\rho^{2}\right)^{2}} \cdot \frac{\rho^{2}}{\left(1+\rho^{2}\right)^{2}}, \\
& \sqrt{|g|}=\frac{\rho}{\left(1+\rho^{2}\right)^{2}}
\end{aligned}
$$

We now integrate this over the relevant coordinates, so we have

$$
V=\int \sqrt{|g|} d^{2} x=\int_{0}^{\infty} \frac{\rho d \rho}{\left(1+\rho^{2}\right)^{2}} \int_{0}^{2 \pi} d \phi=2 \pi \cdot\left[-\frac{1}{2}\left(1+\rho^{2}\right)^{-1}\right]_{0}^{\infty}=2 \pi \cdot \frac{1}{2}=\pi
$$

(c) Repeat parts (a) and (b) for the metric $d s^{2}=\frac{\mathrm{d} x^{2}+\mathrm{d} y^{2}}{\left(1-x^{2}-y^{2}\right)^{2}}$, where now \boldsymbol{x} and \boldsymbol{y} are restricted to the disk $x^{2}+y^{2}<1$.

The work for the metric is essentially identical, so we have

$$
d s^{2}=\frac{\mathrm{d} \rho^{2}+\rho^{2} \mathrm{~d} \phi^{2}}{\left(1-\rho^{2}\right)^{2}}, \quad \sqrt{g}=\frac{\rho}{\left(1-\rho^{2}\right)^{2}} .
$$

Although the range for ϕ is still $(0,2 \pi)$, the range for ρ is now $(0,1)$. The volume is now

$$
V=\int \sqrt{|g|} d^{2} x=\int_{0}^{1} \frac{\rho d \rho}{\left(1-\rho^{2}\right)^{2}} \int_{0}^{2 \pi} d \phi=2 \pi\left[\frac{1}{2}\left(1-\rho^{2}\right)^{-1}\right]_{0}^{1}=\pi(\infty-1)=\infty .
$$

