Physics 780 – General Relativity Solutions to Homework D

- 10. The stress-energy tensor for a perfect fluid is given by $T^{\mu\nu} = (\rho + p)U^{\mu}U^{\nu} + p\eta^{\mu\nu}$. All substances we know of have positive energy density, that is, $T^{00} > 0$.
 - (a) If perfect fluid is going at almost the speed of light, what condition on ρ and/or p will assure that $T^{00} > 0$. This is called the *null energy condition*.

The four-velocity is $U^{\mu} = (\gamma, \gamma \mathbf{v})$, so

$$T^{00} = (\rho + p)U^{0}U^{0} + p\eta^{00} = \gamma^{2}(\rho + p) - p = (\gamma^{2} - 1)(\rho + p) + \rho.$$

In the limit of high velocity, the $\gamma^2 - 1$ term will be much larger than the other term, so we need $\rho + p > 0$.

(b) What condition on ρ and/or p will assure that $T^{00} > 0$ if the fluid is at rest (this is trivial)? Argue that if both the condition from (a) and (b) are true, then $T^{00} > 0$ at *all* speeds. This is called the *weak energy condition*.

If it is at rest, then $T^{00} = \rho$, so we need $\rho > 0$. If we have both conditions, then we see that $T^{00} = (\gamma^2 - 1)(\rho + p) + \rho > 0$.

(c) There is a special relationship between ρ and p that makes the stress-energy tensor independent of the fluid's "speed". What is that relationship (it's easier than it sounds). Vacuum energy density acts this way.

To get the velocity-dependance to disappear, we simply make $\rho + p = 0$, or $p = -\rho$.

(d) Radiation has the property that the trace of the stress energy tensor $T = \eta_{\mu\nu}T^{\mu\nu} = 0$. What is the relationship between ρ and/or p in this case?

We have

$$T = \eta_{\mu\nu}T^{\mu\nu} = (\rho + p)\eta_{\mu\nu}U^{\mu}U^{\nu} + p\eta_{\mu\nu}\eta^{\mu\nu} = -(\rho + p) + 4p = 3p - \rho,$$

so $p = \frac{1}{3}\rho$.

11. The electromagnetic field produces a stress-energy tensor

 $T^{\mu\nu} = \varepsilon_0 \left(F^{\mu\lambda} F^{\nu}{}_{\lambda} - \frac{1}{4} \eta^{\mu\nu} F^{\lambda\sigma} F_{\lambda\sigma} \right).$

(a) Show that for this stress-energy tensor, the trace is always $T = \eta_{\mu\nu} T^{\mu\nu} = 0$.

We have

$$T = \eta_{\mu\nu}T^{\mu\nu} = \varepsilon_0 \left(\eta_{\mu\nu}F^{\mu\lambda}F^{\nu}{}_{\lambda} - \frac{1}{4}\eta^{\mu\nu}\eta_{\mu\nu}F^{\lambda\sigma}F_{\lambda\sigma} \right) = \varepsilon_0 \left(F^{\mu\lambda}F_{\mu\lambda} - \frac{1}{4}\cdot 4F^{\lambda\sigma}F_{\lambda\sigma} \right) = 0.$$

(b) Suppose you have a uniform electric field in the x-direction, $F^{01} = -F^{10} = E$. Find all non-vanishing components of the stress-energy tensor in this case.

We first need to find $F^{\lambda\sigma}F_{\lambda\sigma} = F^{10}F_{10} + F^{01}F_{01} = (-E)E + E(-E) = -2E^2$. Next we note that the second term is non-zero only if we are looking at diagonal terms. The first term must have the three indices μ , ν , and λ all equal to 0 or 1, but λ must not match either μ or ν , which can convince you that we must have $\mu = \nu$. So we have only diagonal components, which are given by

$$\begin{split} T^{00} &= \varepsilon_0 \left(F^{01} F^0_{\ 1} - \frac{1}{4} \eta^{00} \left(-2E^2 \right) \right) = \varepsilon_0 \left(E^2 - \frac{1}{2} E^2 \right) = \frac{1}{2} \varepsilon_0 E^2 , \\ T^{11} &= \varepsilon_0 \left(F^{10} F^1_{\ 0} - \frac{1}{4} \eta^{11} \left(-2E^2 \right) \right) = \varepsilon_0 \left(-E^2 + \frac{1}{2} E^2 \right) = -\frac{1}{2} \varepsilon_0 E^2 , \\ T^{22} &= \varepsilon_0 \left(-\frac{1}{4} \eta^{22} \left(-2E^2 \right) \right) = \frac{1}{2} \varepsilon_0 E^2 , \\ T^{33} &= \varepsilon_0 \left(-\frac{1}{4} \eta^{33} \left(-2E^2 \right) \right) = \frac{1}{2} \varepsilon_0 E^2 , \end{split}$$

As a check, we note that $T = \eta_{\mu\nu}T^{\mu\nu} = -T^{00} + T^{11} + T^{22} + T^{33} = 0$, as it must.