Physics 780 - General Relativity
 Solutions to Homework D

10. The stress-energy tensor for a perfect fluid is given by $T^{\mu \nu}=(\rho+p) U^{\mu} U^{\nu}+p \eta^{\mu \nu}$. All substances we know of have positive energy density, that is, $T^{00}>0$.
(a) If perfect fluid is going at almost the speed of light, what condition on ρ and/or \boldsymbol{p} will assure that $T^{00}>0$. This is called the null energy condition.

The four-velocity is $U^{\mu}=(\gamma, \gamma \mathbf{v})$, so

$$
T^{00}=(\rho+p) U^{0} U^{0}+p \eta^{00}=\gamma^{2}(\rho+p)-p=\left(\gamma^{2}-1\right)(\rho+p)+\rho .
$$

In the limit of high velocity, the $\gamma^{2}-1$ term will be much larger than the other term, so we need $\rho+p>0$.
(b) What condition on ρ and/or \boldsymbol{p} will assure that $T^{00}>0$ if the fluid is at rest (this is trivial)? Argue that if both the condition from (a) and (b) are true, then $T^{00}>0$ at all speeds. This is called the weak energy condition.

If it is at rest, then $T^{00}=\rho$, so we need $\rho>0$. If we have both conditions, then we see that $T^{00}=\left(\gamma^{2}-1\right)(\rho+p)+\rho>0$.
(c) There is a special relationship between ρ and \boldsymbol{p} that makes the stress-energy tensor independent of the fluid's "speed". What is that relationship (it's easier than it sounds). Vacuum energy density acts this way.

To get the velocity-dependance to disappear, we simply make $\rho+p=0$, or $p=-\rho$.
(d) Radiation has the property that the trace of the stress energy tensor $T=\eta_{\mu \nu} T^{\mu \nu}=0$. What is the relationship between ρ and/or p in this case?

We have

$$
T=\eta_{\mu \nu} T^{\mu \nu}=(\rho+p) \eta_{\mu \nu} U^{\mu} U^{\nu}+p \eta_{\mu \nu} \eta^{\mu \nu}=-(\rho+p)+4 p=3 p-\rho,
$$

so $p=\frac{1}{3} \rho$.

11. The electromagnetic field produces a stress-energy tensor

 $T^{\mu \nu}=\varepsilon_{0}\left(F^{\mu \lambda} F^{\nu}{ }_{\lambda}-\frac{1}{4} \eta^{\mu \nu} F^{\lambda \sigma} F_{\lambda \sigma}\right)$.(a) Show that for this stress-energy tensor, the trace is always $T=\eta_{\mu \nu} T^{\mu \nu}=0$.

We have

$$
T=\eta_{\mu \nu} T^{\mu \nu}=\varepsilon_{0}\left(\eta_{\mu \nu} F^{\mu \lambda} F_{\lambda}^{\nu}-\frac{1}{4} \eta^{\mu \nu} \eta_{\mu \nu} F^{\lambda \sigma} F_{\lambda \sigma}\right)=\varepsilon_{0}\left(F^{\mu \lambda} F_{\mu \lambda}-\frac{1}{4} \cdot 4 F^{\lambda \sigma} F_{\lambda \sigma}\right)=0 .
$$

(b) Suppose you have a uniform electric field in the \boldsymbol{x}-direction, $F^{01}=-F^{10}=E$. Find all non-vanishing components of the stress-energy tensor in this case.

We first need to find $F^{\lambda \sigma} F_{\lambda \sigma}=F^{10} F_{10}+F^{01} F_{01}=(-E) E+E(-E)=-2 E^{2}$. Next we note that the second term is non-zero only if we are looking at diagonal terms. The first term must have the three indices μ, v, and λ all equal to 0 or 1 , but λ must not match either μ or v, which can convince you that we must have $\mu=v$. So we have only diagonal components, which are given by

$$
\begin{aligned}
& T^{00}=\varepsilon_{0}\left(F^{01} F_{1}^{0}-\frac{1}{4} \eta^{00}\left(-2 E^{2}\right)\right)=\varepsilon_{0}\left(E^{2}-\frac{1}{2} E^{2}\right)=\frac{1}{2} \varepsilon_{0} E^{2}, \\
& T^{11}=\varepsilon_{0}\left(F^{10} F_{0}^{1}-\frac{1}{4} \eta^{11}\left(-2 E^{2}\right)\right)=\varepsilon_{0}\left(-E^{2}+\frac{1}{2} E^{2}\right)=-\frac{1}{2} \varepsilon_{0} E^{2}, \\
& T^{22}=\varepsilon_{0}\left(-\frac{1}{4} \eta^{22}\left(-2 E^{2}\right)\right)=\frac{1}{2} \varepsilon_{0} E^{2}, \\
& T^{33}=\varepsilon_{0}\left(-\frac{1}{4} \eta^{33}\left(-2 E^{2}\right)\right)=\frac{1}{2} \varepsilon_{0} E^{2},
\end{aligned}
$$

As a check, we note that $T=\eta_{\mu \nu} T^{\mu \nu}=-T^{00}+T^{11}+T^{22}+T^{33}=0$, as it must.

