Solution Set B

5. [15] We can define the four-acceleration as $A^{\mu}=\frac{d}{d \tau} U^{\mu}=\frac{d^{2}}{d \tau^{2}} x^{\mu}$.
(a) [4] Show that if you are in a frame such that a particle in momentarily at rest, so $U^{\mu}\left(\tau_{0}\right)=(1,0,0,0)$, then $\eta_{\mu \nu} A^{\mu} A^{\nu}=\mathbf{a}^{2}$, where a is the ordinary acceleration $\mathbf{a}=\frac{d \mathbf{v}}{d t}$. Since $a=\sqrt{\eta_{\mu \nu} A^{\mu} A^{\nu}}$ is Lorentz invariant, this must be the magnitude of the acceleration as experienced by an object with arbitrary velocity U^{μ}.

The four-velocity is given by $U^{\mu}\left(\tau_{0}\right)=(\gamma, \gamma \mathbf{v})$, where $\gamma=\left(1-v^{2}\right)^{-1 / 2}$. Taking the derivative, we have

$$
A^{\mu}=\frac{d}{d \tau} U^{\mu}=\left(\frac{d \gamma}{d \tau}, \frac{d \gamma}{d \tau} \mathbf{v}+\gamma \frac{d \mathbf{v}}{d \tau}\right)=\frac{d t}{d \tau}\left(\frac{d \gamma}{d t}, \frac{d \gamma}{d t} \mathbf{v}+\gamma \frac{d \mathbf{v}}{d t}\right)
$$

It is easy to show that $d \gamma / d t=\left(1-v^{2}\right)^{-3 / 2} v(d v / d t)=\gamma^{3} v(d v / d t)$. We also know that $d t / d \tau=\gamma$. So we have

$$
A^{\mu}=\left(\gamma^{4} v \frac{d v}{d t}, \gamma^{4} \mathbf{v} v \frac{d v}{d t}+\gamma^{2} \mathbf{a}\right)
$$

If the instantaneous velocity is zero, then we have $v=0, \gamma=1$, and therefore $A^{\mu}=(0, \mathbf{a})$, so $\eta_{\mu \nu} A^{\mu} A^{\nu}=\mathbf{a}^{2}$. Hence $\sqrt{\eta_{\mu \nu} A^{\mu} A^{v}}=a$.
(b) [5] An object moves according to the formula $x=\sqrt{b^{2}+t^{2}}-b, y=z=0$. Rewrite these in terms of proper time τ (hint: this was almost done for you in class), then work out the four-velocity $U^{\mu}(\tau)$ the four-acceleration $A^{\mu}(\tau)$ and find a formula for the proper acceleration a, which should be constant.

This is almost identical with the problem done in class. We have $d x=t d t / \sqrt{b^{2}+t^{2}}$, so

$$
\tau=\int d \tau=\int \sqrt{-\eta_{\mu \nu} d x^{\mu} d x^{v}}=\int \sqrt{d t^{2}-d x^{2}}=\int \sqrt{d t^{2}-\frac{(t d t)^{2}}{b^{2}+t^{2}}}=\int \frac{b d t}{\sqrt{b^{2}+t^{2}}}
$$

This integral is identical to one we did in class, and is given by

$$
\tau=b \sinh ^{-1}(t / b)
$$

We can invert this to get t in terms of τ, and then substitute to find x in terms of τ :

$$
\begin{aligned}
& t=b \sinh (\tau / b), \\
& x=\sqrt{b^{2}+t^{2}}-b=\sqrt{b^{2}+b^{2} \sinh ^{2}(\tau / b)}-b=b \cosh (\tau / b)-b .
\end{aligned}
$$

We now start working out the four-velocity and the four-acceleration:

$$
\begin{aligned}
U^{\mu} & =\frac{d}{d \tau}(b \sinh (\tau / b), b \cosh (\tau / b)-b, 0,0)=(\cosh (\tau / b), \sinh (\tau / b), 0,0) \\
A^{\mu} & =\frac{d}{d \tau}(\cosh (\tau / b), \sinh (\tau / b), 0,0)=\left(\frac{1}{b} \sinh \left(\frac{\tau}{b}\right), \frac{1}{b} \cosh \left(\frac{\tau}{b}\right), 0,0\right)
\end{aligned}
$$

The acceleration dotted into itself is therefore

$$
\eta_{\mu \nu} A^{\mu} A^{\nu}=-\left(A^{0}\right)^{2}+\left(A^{1}\right)^{2}=-\frac{1}{b^{2}} \sinh ^{2}\left(\frac{\tau}{b}\right)+\frac{1}{b^{2}} \cosh ^{2}\left(\frac{\tau}{b}\right)=\frac{1}{b^{2}} .
$$

We therefore conclude that $a^{2}=1 / b^{2}$, so $b=1 / a$.
(c) [3] Determine the value of \boldsymbol{b} in years (or light-years) if $a=g=9.80 \mathrm{~m} / \mathrm{s}^{2}$.

Keeping in mind that we are working in units where $c=1$, we have

$$
b=\frac{1}{g}=\frac{2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}}{9.80 \mathrm{~m} / \mathrm{s}^{2}}=\frac{3.059 \times 10^{7} \mathrm{~s}}{3.156 \times 10^{7} \mathrm{~s} / \mathrm{yr}}=0.969 \mathrm{yr} .
$$

Since a light year is $c \cdot \mathrm{yr}$, this is also the same in light years.
(d) [3] If you leave Earth, starting at rest, and accelerate at g, how much proper time in years would it take you go get to α-Centauri ($4.3 c \cdot y r$), the center of the galaxy ($27,000 c \cdot \mathbf{y r}$) and the approximate edge of the Universe ($2 \times 10^{10} c \cdot \mathbf{y r}$).

We note that our formulas have initially $x=0$, so these formulas describe the motion as a function of proper time. Solving for τ in terms of x, we find

$$
\tau=b \cosh ^{-1}\left(\frac{x}{b}+1\right)
$$

We now simply substitute all the relevant distances

$$
\begin{gathered}
\tau_{\alpha}=(0.969 \mathrm{yr}) \cosh ^{-1}\left(\frac{4.30 \mathrm{yr}}{0.969 \mathrm{yr}}+1\right)=2.30 \mathrm{yr}, \quad \tau_{g}=(0.969 \mathrm{yr}) \cosh ^{-1}\left(\frac{27,000 \mathrm{yr}}{0.969 \mathrm{yr}}+1\right)=10.6 \mathrm{yr}, \\
\tau_{U}=(0.969 \mathrm{yr}) \cosh ^{-1}\left(\frac{2 \times 10^{10} \mathrm{yr}}{0.969 \mathrm{yr}}+1\right)=23.7 \mathrm{yr} .
\end{gathered}
$$

Interestingly, you can get almost anywhere in the universe, but you have to use a substantial fraction of your lifetime to get there.
6. The electromagnetic field tensor $F_{\mu \nu}$ is given by equation (1.69). If the fields are given by the three components of E and B, what would be the new values of the electric and magnetic fields E^{\prime} and B^{\prime} if you
(a) Performed a rotation by an angle θ around the z-axis,
(b) Perform a boost in the \boldsymbol{x}-direction by rapidity ϕ.

The corresponding inverse Lorentz matrices in each case are given below. Note that because $F_{\mu \nu}$ is anti-symmetric, you can calculate just six components of $F_{\mu \nu}$ to get \mathbf{E}^{\prime} and B '.

$$
\Lambda(\theta)^{-1}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \cos \theta & -\sin \theta & 0 \\
0 & \sin \theta & \cos \theta & 0 \\
0 & 0 & 0 & 1
\end{array}\right), \quad \Lambda(\phi)^{-1}=\left(\begin{array}{cccc}
\cosh \phi & \sinh \phi & 0 & 0 \\
\sinh \phi & \cosh \phi & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

We simply start working them all out, using the inverse Lorenz transformations. For the rotations, we have

$$
\begin{aligned}
E_{1}^{\prime} & =F_{10}^{\prime}=F_{\mu \nu}\left(\Lambda^{-1}\right)_{1}^{\mu}\left(\Lambda^{-1}\right)_{0}^{v}=F_{10}\left(\Lambda^{-1}\right)_{1}^{1}\left(\Lambda^{-1}\right)_{0}^{0}+F_{20}\left(\Lambda^{-1}\right)_{1}^{2}\left(\Lambda^{-1}\right)_{0}^{0}=E_{1} \cos \theta+E_{2} \sin \theta, \\
E_{2}^{\prime} & =F_{20}^{\prime}=F_{\mu \nu}\left(\Lambda^{-1}\right)_{2}^{\mu}\left(\Lambda^{-1}\right)_{0}^{v}=F_{10}\left(\Lambda^{-1}\right)_{2}^{1}\left(\Lambda^{-1}\right)_{0}^{0}+F_{20}\left(\Lambda^{-1}\right)_{2}^{2}\left(\Lambda^{-1}\right)_{0}^{0}=-E_{1} \sin \theta+E_{2} \cos \theta, \\
E_{3}^{\prime} & =F_{30}^{\prime}=F_{\mu \nu}\left(\Lambda^{-1}\right)_{3}^{\mu}\left(\Lambda^{-1}\right)_{0}^{v}=F_{30}\left(\Lambda^{-1}\right)_{3}^{3}\left(\Lambda^{-1}\right)_{0}^{0}=E_{3}, \\
B_{1}^{\prime} & =F_{23}^{\prime}=F_{\mu \nu}\left(\Lambda^{-1}\right)_{2}^{\mu}\left(\Lambda^{-1}\right)_{3}^{v}=F_{13}\left(\Lambda^{-1}\right)_{2}^{1}\left(\Lambda^{-1}\right)_{3}^{3}+F_{23}\left(\Lambda^{-1}\right)_{2}^{2}\left(\Lambda^{-1}\right)_{3}^{3}=B_{2} \sin \theta+B_{1} \cos \theta, \\
B_{2}^{\prime} & =F_{31}^{\prime}=F_{\mu \nu}\left(\Lambda^{-1}\right)_{3}^{\mu}\left(\Lambda^{-1}\right)_{1}^{v}=F_{31}\left(\Lambda^{-1}\right)_{3}^{3}\left(\Lambda^{-1}\right)_{1}^{1}+F_{32}\left(\Lambda^{-1}\right)_{3}^{3}\left(\Lambda^{-1}\right)_{1}^{2}=B_{2} \cos \theta-B_{1} \sin \theta, \\
B_{3}^{\prime} & =F_{12}^{\prime}=F_{\mu \nu}\left(\Lambda^{-1}\right)_{1}^{\mu}\left(\Lambda^{-1}\right)_{2}^{v}=F_{12}\left(\Lambda^{-1}\right)_{1}^{1}\left(\Lambda^{-1}\right)_{2}^{2}+F_{21}\left(\Lambda^{-1}\right)_{1}^{2}\left(\Lambda^{-1}\right)_{2}^{1}=B_{3} \cos ^{2} \theta+B_{3} \sin ^{2} \theta \\
& =B_{3} .
\end{aligned}
$$

For the boosts we have

$$
\begin{aligned}
E_{1}^{\prime} & =F_{10}^{\prime}=F_{\mu \nu}\left(\Lambda^{-1}\right)_{1}^{\mu}\left(\Lambda^{-1}\right)_{0}^{\nu}=F_{10}\left(\Lambda^{-1}\right)_{1}^{1}\left(\Lambda^{-1}\right)_{0}^{0}+F_{01}\left(\Lambda^{-1}\right)_{1}^{0}\left(\Lambda^{-1}\right)_{0}^{1}=E_{1}\left(\cosh ^{2} \phi-\sinh ^{2} \phi\right) \\
& =E_{1} \\
E_{2}^{\prime} & =F_{20}^{\prime}=F_{\mu \nu}\left(\Lambda^{-1}\right)_{2}^{\mu}\left(\Lambda^{-1}\right)_{0}^{v}=F_{20}\left(\Lambda^{-1}\right)_{2}^{2}\left(\Lambda^{-1}\right)_{0}^{0}+F_{21}\left(\Lambda^{-1}\right)_{2}^{2}\left(\Lambda^{-1}\right)_{0}^{1}=E_{2} \cosh \phi-B_{3} \sinh \phi \\
E_{3}^{\prime} & =F_{30}^{\prime}=F_{\mu \nu}\left(\Lambda^{-1}\right)_{3}^{\mu}\left(\Lambda^{-1}\right)_{0}^{v}=F_{30}\left(\Lambda^{-1}\right)_{3}^{3}\left(\Lambda^{-1}\right)_{0}^{0}+F_{31}\left(\Lambda^{-1}\right)_{3}^{3}\left(\Lambda^{-1}\right)_{0}^{1}=E_{3} \cosh \phi+B_{2} \sinh \phi \\
B_{1}^{\prime} & =F_{23}^{\prime}=F_{\mu \nu}\left(\Lambda^{-1}\right)_{2}^{\mu}\left(\Lambda^{-1}\right)_{3}^{v}=F_{23}\left(\Lambda^{-1}\right)_{2}^{2}\left(\Lambda^{-1}\right)_{3}^{3}=B_{1} \\
B_{2}^{\prime} & =F_{31}^{\prime}=F_{\mu \nu}\left(\Lambda^{-1}\right)_{3}^{\mu}\left(\Lambda^{-1}\right)_{1}^{v}=F_{30}\left(\Lambda^{-1}\right)_{3}^{3}\left(\Lambda^{-1}\right)_{1}^{0}+F_{31}\left(\Lambda^{-1}\right)_{3}^{3}\left(\Lambda^{-1}\right)_{1}^{1}=E_{3} \sinh \phi+B_{2} \cosh \phi \\
B_{3}^{\prime} & =F_{12}^{\prime}=F_{\mu \nu}\left(\Lambda^{-1}\right)_{1}^{\mu}\left(\Lambda^{-1}\right)_{2}^{v}=F_{02}\left(\Lambda^{-1}\right)_{1}^{0}\left(\Lambda^{-1}\right)_{2}^{2}+F_{12}\left(\Lambda^{-1}\right)_{1}^{1}\left(\Lambda^{-1}\right)_{2}^{2}=-E_{2} \sinh \phi+B_{3} \cosh \phi
\end{aligned}
$$

