Physics 780 - General Relativity
 Solutions to Homework A

1. [5] Using the convention that $\boldsymbol{c}=1$, rewrite the following quantities (on personal ones, you can lie, but your lie has to be plausible)
(a) [1.5] Your age in m
(b) [1.5] The length of your foot in ns
(c) [2] The Schwarzschild radius of the Sun, given by $2 G M$, in $\mathbf{k m}$

Your answer will depend on your physical characteristic and what star your home planet orbits, but for Dr. Carlson he is about 60.8 year old, his foot is about a foot long, and the Sun's mass is about $1.989 \times 10^{30} \mathrm{~kg}$, so

$$
\begin{aligned}
& t=t c=(60.8 \mathrm{y})\left(3.156 \times 10^{7} \mathrm{~s} / \mathrm{y}\right)\left(2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)=5.75 \times 10^{17} \mathrm{~m} \\
& L=\frac{L}{c}=\frac{(12.0 \mathrm{in})(0.0254 \mathrm{~m} / \mathrm{in})}{2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}}=1.017 \times 10^{-9} \mathrm{~s}=1.017 \mathrm{~ns}, \\
& 2 G M=\frac{2 G M}{c^{2}}=\frac{2\left(6.674 \times 10^{-11} \mathrm{~m}^{3} \mathrm{~kg}^{-1} \mathrm{~s}^{-3}\right)\left(1.989 \times 10^{30} \mathrm{~kg}\right)}{\left(2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)^{2}}=2954 \mathrm{~m}=2.954 \mathrm{~km} .
\end{aligned}
$$

2. [5] A particle moves in a helical path given by $(x, y, z)=(R \cos (\omega t), R \sin (\omega t)$, $v t)$. Find a relation between the coordinate time t and the proper time τ, and then rewrite all four coordinates in terms of $\boldsymbol{\tau}$.

We have

$$
\begin{aligned}
d \tau^{2} & =d t^{2}-d x^{2}-d y^{2}-d z^{2}=d t^{2}-(-R \omega \sin (\omega t) d t)^{2}-(R \omega \cos (\omega t) d t)^{2}-(v d t)^{2} \\
& =d t^{2}\left[1-R^{2} \omega^{2}\left(\sin ^{2}(\omega t)+\cos ^{2}(\omega t)\right)-v^{2}\right]=d t^{2}\left(1-R^{2} \omega^{2}-v^{2}\right), \\
\tau & =\int d t \sqrt{1-R^{2} \omega^{2}-v^{2}}=t \sqrt{1-R^{2} \omega^{2}-v^{2}} .
\end{aligned}
$$

We can rewrite this as $t=\gamma \tau$, where $\gamma=\frac{1}{\sqrt{1-R^{2} \omega^{2}-v^{2}}}$, then it is clear that our coordinates are

$$
t=\gamma \tau, \quad x=R \cos (\omega \gamma \tau), \quad y=R \sin (\omega \gamma \tau), \quad z=\gamma \nu \tau, \quad \text { where } \quad \gamma=\frac{1}{\sqrt{1-\omega^{2} R^{2}-v^{2}}} .
$$

3. [10] A general Lorentz transformation is a 4×4 matrix satisfying $\eta_{\mu \nu}=\eta_{\alpha \beta} \Lambda^{\alpha}{ }_{\mu} \Lambda^{\beta}{ }_{\nu}$, which can be written in matrix form as $\eta=\Lambda^{T} \eta \Lambda$
(a) [3] Using the formulas $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$ and $\operatorname{det}\left(A^{T}\right)=\operatorname{det}(A)$, show that $\operatorname{det}(\Lambda)= \pm 1$.

Working in the matrix notation, we have

$$
\begin{gathered}
\operatorname{det}(\eta)=\operatorname{det}\left(\Lambda^{T}\right) \operatorname{det}(\eta) \operatorname{det}(\Lambda)=\operatorname{det}(\eta)[\operatorname{det}(\Lambda)]^{2}, \\
{[\operatorname{det}(\Lambda)]^{2}=1, \quad \operatorname{det}(\Lambda)= \pm 1}
\end{gathered}
$$

(b) [3] Using this equation in the case $\mu=v=0$, show that $\Lambda_{0}^{0} \geq 1$ or $\Lambda_{0}^{0} \leq-1$.

Using the fact that $\eta_{\alpha \beta}$ has only diagonal elements, the equation for $\mu=v=0$ yields

$$
\begin{aligned}
-1 & =\eta_{00}=\eta_{\alpha \beta} \Lambda_{0}^{\alpha} \Lambda_{0}^{\beta}=\eta_{00} \Lambda_{0}^{0} \Lambda_{0}^{0}+\eta_{11} \Lambda_{0}^{1} \Lambda_{0}^{1}+\eta_{22} \Lambda_{0}^{2} \Lambda_{0}^{2}+\eta_{33} \Lambda_{0}^{3} \Lambda_{0}^{3} \\
& =-\left(\Lambda_{0}^{0}\right)^{2}+\left(\Lambda_{0}^{1}\right)^{2}+\left(\Lambda_{0}^{2}\right)^{2}+\left(\Lambda_{0}^{3}\right)^{2}, \\
\left(\Lambda_{0}^{0}\right)^{2} & =1+\left(\Lambda_{0}^{1}\right)^{2}+\left(\Lambda_{0}^{2}\right)^{2}+\left(\Lambda_{0}^{3}\right)^{2}
\end{aligned}
$$

It follows that $\left(\Lambda_{0}^{0}\right)^{2} \geq 1$, so $\left|\Lambda_{0}^{0}\right| \geq 1$ which implies $\Lambda_{0}^{0} \geq 1$ or $\Lambda_{0}^{0} \leq-1$.
(c) [2] Argue that if you start with the identity Lorentz transformation ($\Lambda=1$), and then continuously change it, by making small rotations or boosts, the sign of $\operatorname{det}(\Lambda)$ and $\Lambda^{0}{ }_{0}$ will never change. Call these Lorentz transformations proper Lorentz transformation.

As we perform small changes to Λ, the determinant and the value of Λ_{0}^{0} can only change in a continuous manner. Therefore the determinant, constrained to the values ± 1, cannot jump from positive to negative, so it must always have the value +1 . Similarly, Λ_{0}^{0} starts at +1 , and since it can't slowly change to a value slightly less than one, it will always have $\Lambda_{0}^{0} \geq 1$, also positive.
(d) [2] Show that time reversal $\Lambda=\mathcal{T}=\operatorname{diag}(-1,1,1,1)$ parity, $\Lambda=\mathcal{P}=\operatorname{diag}(1,-1,-1,-1)$, and the combination $\Lambda=\mathcal{P} \mathcal{I}$ are improper Lorentz transformations.

It is trivial to see that \mathcal{T} and \mathcal{P} both have determinant minus one, and therefore are improper. The combination $\mathcal{P} \mathcal{T}$ has determinant +1 , but it has $\Lambda_{0}^{0}=-1$ (as also does \mathcal{T}), and hence it is also improper. Hence you can't by small changes turn around in time, turn around like a mirror image, nor can you do both.
4. [5] The concept of future and past do not work exactly the same in special relativity, but some things are the same. We will say that a point x^{μ} is in the absolute future of another point y^{μ} if $x^{0}-y^{0}>|\mathbf{x}-\mathbf{y}|$. In standard physics, the future of the future is the future. Show that in relativity, if x is in the future of y and y is in the future of z, then x is in the future of \boldsymbol{z}. You may want to look up the triangle inequality.

We know that $x^{0}-y^{0}>|\mathbf{x}-\mathbf{y}|$ and $y^{0}-z^{0}>|\mathbf{y}-\mathbf{z}|$. Adding these two inequalities, we have $x^{0}-z^{0}>|\mathbf{x}-\mathbf{y}|+|\mathbf{y}-\mathbf{z}|$. We want to prove that $x^{0}-z^{0}>|\mathbf{x}-\mathbf{z}|$. All the we need to finish the proof is to show that

$$
|\mathbf{x}-\mathbf{y}|+|\mathbf{y}-\mathbf{z}| \geq|\mathbf{x}-\mathbf{z}| .
$$

This theorem is the triangle inequality, since it says that the sum of two sides of a triangle is always at least as long as the third side. Mathematically, you can prove this by first defining $\mathbf{a}=\mathbf{x}-\mathbf{y}$ and $\mathbf{b}=\mathbf{y}-\mathbf{z}$. We then substitute this into the expression, and then square it, so we are trying to prove

$$
\begin{aligned}
|\mathbf{a}|+|\mathbf{b}| & \geq|\mathbf{a}+\mathbf{b}|, \\
a^{2}+2 a b+b^{2} & \geq(\mathbf{a}+\mathbf{b})^{2}, \\
a^{2}+2 a b+b^{2} & \geq a^{2}+2 \mathbf{a} \cdot \mathbf{b}+b^{2}, \\
a b & \geq \mathbf{a} \cdot \mathbf{b}=a b \cos \theta .
\end{aligned}
$$

Since we always have $\cos \theta \leq 1$, this is obvious.

