
## Physics 780 – General Relativity Homework Set X

- 56. Suppose we have two non-relativistic objects of mass M orbiting each other in circular orbits with a separation a (so the radius of the orbit is a/2).
  - (a) Since the objects are non-relativistic, we can use Newtonian approximations. By equating the gravitational force to the centripetal force  $F = M\omega^2(a/2)$ , find a formula for the angular velocity for the orbit  $\omega$ .
  - (b) Write the position of each particle, assuming they are orbiting in the *xy*-plane about the origin, as a function of time.



- (c) Find the moments  $Q_{ij} = \sum_{a} m_a x_a^i x_a^j$  as a function of time.
- (d) Rewrite  $Q_{ij}(t)$  as a constant term plus oscillatory terms. What is the frequency of the oscillatory terms? Write the oscillating terms as  $Q_{ii}(t) = (\text{constant}) + Q_{ij}e^{-i\omega t} + Q_{ij}^*e^{i\omega t}$ .
- (e) Find the power radiated  $P = \frac{2}{5}G\omega^6 c^{-5}Q_{ii}^*Q_{ii}$ .
- (f) Find total energy E = K + V, where the potential energy is  $V = -GM^2/a$ , and K is the sum of the two potential energies, each of which is  $K_a = \frac{1}{2}M(\omega a/2)^2$ . You should find that the potential energy is exactly twice as big as the kinetic term (and of opposite sign).
- (g) Find a formula for the characteristic time  $\tau = |E|/P$  it will take for the orbit to decay to radius zero. Evaluate it for  $M = M_{Sun} = 1.989 \times 10^{30}$  kg and  $a = 2 \times 10^4$  km.