Physics 780 - General Relativity
 Homework Set X

56. Suppose we have two non-relativistic objects of mass M orbiting each other in circular orbits with a separation a (so the radius of the orbit is $a / 2$).
(a) Since the objects are non-relativistic, we can use Newtonian approximations. By equating the gravitational force to the centripetal force $F=M \omega^{2}(a / 2)$, find a formula for the angular velocity for the orbit ω.
(b) Write the position of each particle, assuming they are orbiting in
 the $x y$-plane about the origin, as a function of time.
(c) Find the moments $Q_{i j}=\sum_{a} m_{a} x_{a}^{i} x_{a}^{j}$ as a function of time.
(d) Rewrite $Q_{i j}(t)$ as a constant term plus oscillatory terms. What is the frequency of the oscillatory terms? Write the oscillating terms as $Q_{i j}(t)=($ constant $)+Q_{i j} e^{-i \omega t}+Q_{i j}^{*} e^{i o t}$.
(e) Find the power radiated $P=\frac{2}{5} G \omega^{6} c^{-5} Q_{i j}^{*} Q_{i j}$.
(f) Find total energy $E=K+V$, where the potential energy is $V=-G M^{2} / a$, and K is the sum of the two potential energies, each of which is $K_{a}=\frac{1}{2} M(\omega a / 2)^{2}$. You should find that the potential energy is exactly twice as big as the kinetic term (and of opposite sign).
(g) Find a formula for the characteristic time $\tau=|E| / P$ it will take for the orbit to decay to radius zero. Evaluate it for $M=M_{S u n}=1.989 \times 10^{30} \mathrm{~kg}$ and $a=2 \times 10^{4} \mathrm{~km}$.
