Physics 780 - General Relativity
 Homework Set W

54. In class I assumed the identity $\int T^{0 i}(x) x^{j} d^{3} \mathbf{x}=\int T^{0 j}(x) x^{i} d^{3} \mathbf{x}$. This isn't quite true, but it is close to true.
(a) Call the difference between these two expressions $J^{i j}$. Write an expression for the time derivative of $J^{i j}$.
(b) Use the identity $\partial_{0} T^{0 \alpha}=-\partial_{k} T^{k \alpha}$ to rewrite the integrals as space derivatives.
(c) Integrate these expression by parts. Since we are going to assume T vanishes at sufficient distances, the surface terms vanish. Simplify the remaining derivatives by using $\partial_{k} x^{\ell}=\delta_{k}^{\ell}$, and do the sum over k.
(d) Show that $J^{i j}$ is constant. Since we are focusing on the portion of the integrals that oscillate, this means that any oscillating component satisfies

$$
\int T^{0 i}(x) x^{j} d^{3} \mathbf{x}=\int T^{0 j}(x) x^{i} d^{3} \mathbf{x}
$$

55. We had some angular integrals that needed to be done, of the form $\int d \Omega, \int k_{i} k_{j} d \Omega$ and $\int k_{i} k_{j} k_{\ell} k_{m} d \Omega$, where $\int d \Omega \equiv \int_{0}^{2 \pi} d \phi \int_{0}^{\pi} \sin \theta d \theta$.
(a) Find $\int d \Omega$. This part of the problem is completely different from the remaining parts.
(b) To find $\int k_{i} k_{j} d \Omega$, first note that since all directions are created equal, it must be some sort of invariant tensor. The only tensors in 2D that are invariant are $\delta_{i j}$ and $\tilde{\varepsilon}_{i j k}$ and combinations of them. Argue that the result must be proportional to $\delta_{i j}$. Call the constant of proportionality A.
(c) Multiply the integral in part (b) by $\delta_{i j}$ summing over i and j, and using the identity $\mathbf{k}^{2}=\omega^{2}$ to simplify. Determine A.
(d) To find $\int k_{i} k_{j} k_{\ell} k_{m} d \Omega$, first note that since all directions are created equal, it must be some sort of invariant tensor. Argue that the result must be proportional to $\delta_{i j} \delta_{\ell m}+\delta_{i \ell} \delta_{j m}+\delta_{i m} \delta_{j \ell}$. Call the constant of proportionality B.
(e) Do something similar to what you did in part (c) and use the identity $\mathbf{k}^{2}=\omega^{2}$ to simplify and determine B.
