Physics 780 – General Relativity Homework Set W

- 54. In class I assumed the identity $\int T^{0i}(x) x^j d^3 \mathbf{x} = \int T^{0j}(x) x^i d^3 \mathbf{x}$. This isn't quite true, but it is close to true.
 - (a) Call the difference between these two expressions J^{ij} . Write an expression for the time derivative of J^{ij} .
 - (b) Use the identity $\partial_0 T^{0\alpha} = -\partial_k T^{k\alpha}$ to rewrite the integrals as space derivatives.
 - (c) Integrate these expression by parts. Since we are going to assume T vanishes at sufficient distances, the surface terms vanish. Simplify the remaining derivatives by using
 ∂_kx^ℓ = δ^ℓ_k, and do the sum over k.
 - (d) Show that J^{ij} is constant. Since we are focusing on the portion of the integrals that oscillate, this means that any oscillating component satisfies $\int T^{0i}(x) x^j d^3 \mathbf{x} = \int T^{0j}(x) x^i d^3 \mathbf{x} \,.$
- 55. We had some angular integrals that needed to be done, of the form $\int d\Omega$, $\int k_i k_j d\Omega$ and

$$\int k_i k_j k_\ell k_m d\Omega$$
, where $\int d\Omega = \int_0^{2\pi} d\phi \int_0^{\pi} \sin\theta \, d\theta$.

- (a) Find $\int d\Omega$. This part of the problem is completely different from the remaining parts.
- (b) To find $\int k_i k_j d\Omega$, first note that since all directions are created equal, it must be some sort of invariant tensor. The only tensors in 2D that are invariant are δ_{ij} and $\tilde{\varepsilon}_{ijk}$ and combinations of them. Argue that the result must be proportional to δ_{ij} . Call the constant of proportionality *A*.
- (c) Multiply the integral in part (b) by δ_{ij} summing over *i* and *j*, and using the identity $\mathbf{k}^2 = \omega^2$ to simplify. Determine *A*.
- (d) To find $\int k_i k_j k_\ell k_m d\Omega$, first note that since all directions are created equal, it must be some sort of invariant tensor. Argue that the result must be proportional to $\delta_{ii} \delta_{\ell m} + \delta_{i\ell} \delta_{im} + \delta_{im} \delta_{i\ell}$. Call the constant of proportionality *B*.
- (e) Do something similar to what you did in part (c) and use the identity $\mathbf{k}^2 = \omega^2$ to simplify and determine *B*.